Full Text:   <3115>

Summary:  <1877>

CLC number: U211.3

On-line Access: 2013-12-03

Received: 2013-07-01

Revision Accepted: 2013-11-04

Crosschecked: 2013-11-07

Cited: 0

Clicked: 6515

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2013 Vol.14 No.12 P.867-879


Analytical study on the dynamic displacement response of a curved track subjected to moving loads*

Author(s):  Ke-fei Li1,2, Wei-ning Liu1, Valeri Markine3, Zhi-wei Han2

Affiliation(s):  1. School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China; more

Corresponding email(s):   kefeilee@sina.com

Key Words:  Curved track, Moving loads, Dynamic displacement, Analytical solution, Transfer function

Ke-fei Li, Wei-ning Liu, Valeri Markine, Zhi-wei Han. Analytical study on the dynamic displacement response of a curved track subjected to moving loads[J]. Journal of Zhejiang University Science A, 2013, 14(12): 867-879.

@article{title="Analytical study on the dynamic displacement response of a curved track subjected to moving loads",
author="Ke-fei Li, Wei-ning Liu, Valeri Markine, Zhi-wei Han",
journal="Journal of Zhejiang University Science A",
publisher="Zhejiang University Press & Springer",

%0 Journal Article
%T Analytical study on the dynamic displacement response of a curved track subjected to moving loads
%A Ke-fei Li
%A Wei-ning Liu
%A Valeri Markine
%A Zhi-wei Han
%J Journal of Zhejiang University SCIENCE A
%V 14
%N 12
%P 867-879
%@ 1673-565X
%D 2013
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1300225

T1 - Analytical study on the dynamic displacement response of a curved track subjected to moving loads
A1 - Ke-fei Li
A1 - Wei-ning Liu
A1 - Valeri Markine
A1 - Zhi-wei Han
J0 - Journal of Zhejiang University Science A
VL - 14
IS - 12
SP - 867
EP - 879
%@ 1673-565X
Y1 - 2013
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1300225

A closed-form out-of-plane dynamic displacement response of a curved track subjected to moving loads was proposed. The track structure was modeled as a planar curved Timoshenko beam periodically supported by the double-layer spring-damping elements. The general dynamic displacement response induced by the moving loads along the curve on the elastic semi-infinite space was firstly obtained in the frequency domain, according to the Duhamel integral and the dynamic reciprocity theorem. In the case of the periodic curved track structure subjected to moving loads, the dynamic displacement equation was simplified into a form of summation within the basic track cell instead of the integral. The transfer function for the curved track was expressed in the form of a transfer matrix. Single and series moving loads were involved in the calculation program. For the verification of the analytical model, the mid-span vertical deflection of a simply support curved beam subjected to moving load was recalculated and compared with the same case in the reference. The research results indicate that: under the same moving loads, the displacement response of the curved track decreases slightly with the increasing track radius, and the displacement response of the curved track with the radius greater than or equal to 600 m is almost equivalent to the displacement response of the straight track; the frequency spectrum of the curved track is more abundant than that of the straight track, which may result in more wheel-rail resonance and rail corrugation in the curved lines.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article


[1] Bickford, W.B., Strom, B.T., 1975. Vibration of plane curved beams. Journal of Sound and Vibration, 39(2):135-146. 

[2] Bickford, W.B., Maganty, S.P., 1986. On the out-of-plane vibrations of thick rings. Journal of Sound and Vibration, 108(3):503-507. 

[3] Degrande, G., Lombaert, G., 2001. An efficient formulation of Krylov’s prediction model for train induced vibrations based on the dynamic reciprocity theorem. Journal of the Acoustical Society of America, 110(3):1379-1390. 

[4] Den Hartog, J.P., 1928. XL. The lowest natural frequency of circular arcs. Philosophical Magazine Series 7, 5(28):400-408. 

[5] Ding, D.Y., Gupta, S., Liu, W.N., Lombaert, G., Degrande, G., 2010. Prediction of vibrations induced by trains on line 8 of Beijing metro. Journal of Zhejiang Universit-SCIENCE A (Applied Physics and Engineering), 11(4):280-293. 

[6] Genin, J., Ting, E.C., Vafa, Z., 1982. Curved bridge response due to a moving vehicle. Journal of Sound and Vibration, 81(4):469-475. 

[7] Kawakami, M., Sakiyama, T., Matsuda, H., Morita, C., 1995. In-plane and out-of-plane free vibrations of curved beams with variable sections. Journal of Sound and Vibration, 187(3):381-401. 

[8] Liu, W.N., Zhang, Y.Q., 2004. A periodic analytical solution of railway track structure under moving loads. Engineering Mechanics, (in Chinese),21(5):100-102. 

[9] Love, A.E.H., 1927.  A Treatise on the Mathematical Theory of Elasticity. The Cambridge University Press,Cambridge :

[10] Montalvão e Silva, J.M., Urgueira, A.P.V., 1988. Out-of-plane dynamic response of curved beams—An analytical model. International Journal of Solids and Structures, 24(3):271-284. 

[11] Rao, S.S., 1971. Effects of transverse shear and rotatory inertia on the coupled twist-bending vibrations of circular rings. Journal of Sound and Vibration, 16(4):551-566. 

[12] Stokes, S.G.G., 1849. Discussion of a Differential Equation Relating to the Breaking of Railway Bridges. Transactions of the Cambridge Philosophical Society, :707-735. 

[13] Sun, J.P., Li, Q.N., 2009. Precise transfer matrix method for solving earthquake response of curved box bridges. Journal of Earthquake Engineering and Engineering Vibration, (in Chinese),29(4):139-146. 

[14] Sun, J.P., Li, Q.N., Zhang, P.K., 2009. Precise transfer matrix method for resolving the natural frequencies of curved box bridge. Journal of Xian University of Architecture & Technology (Natural Science Edition), (in Chinese),41(6):811-816. 

[15] Tan, C.P., Shore, S., 1968. Response of horizontally curved bridge to moving load. Journal of the Structural Division, 94(9):2135-2154. 

[16] Timoenko, S.P., 1953.  History of the Strength of Materials. Dover Publications, Inc.,New York :

[17] Volterra, E., Morell, J.D., 1961. Lowest natural frequency of elastic arc for vibrations outside the plane of initial curvature. Journal of Applied Mechanics, 28(4):624-627. 

[18] Wang, T.M., Nettleton, R.H., Keita, B., 1980. Natural frequencies for out-of-plane vibrations of continuous curved beams. Journal of Sound and Vibration, 68(3):427-436. 

[19] Yang, Y.B., Wu, C.M., Yau, J.D., 2001. Dynamic response of a horizontally curved beam subjected to vertical and horizontal moving loads. Journal of Sound and Vibration, 242(3):519-537. 

[20] Yong, Y., Lin, Y.K., 1989. Propagation of decaying waves in periodic and piecewise periodic structures of finite length. Journal of Sound and Vibration, 129(1):99-118. 

[21] Zhai, W.M., 2002.  Vehicle-track Coupling Dynamics (Second Edition). (in Chinese), China Railway Publishing House,Beijing :

[22] Zhang, Y.Q., 2004.  Analysis on the Metro-induced Vibration Response and the Effect of the Track Structure Parameters. PhD Thesis, (in Chinese), Department of Tunnel Engineering, Beijing Jiaotong University,Beijing, China :

Open peer comments: Debate/Discuss/Question/Opinion


Please provide your name, email address and a comment

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE