CLC number: U448.27
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2014-05-21
Cited: 3
Clicked: 9540
Rui Zhou, Zhou-hong Zong, Xue-yang Huang, Zhang-hua Xia. Seismic response study on a multi-span cable-stayed bridge scale model under multi-support excitations. Part II: numerical analysis[J]. Journal of Zhejiang University Science A, 2014, 15(6): 405-418.
@article{title="Seismic response study on a multi-span cable-stayed bridge scale model under multi-support excitations. Part II: numerical analysis",
author="Rui Zhou, Zhou-hong Zong, Xue-yang Huang, Zhang-hua Xia",
journal="Journal of Zhejiang University Science A",
volume="15",
number="6",
pages="405-418",
year="2014",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1300340"
}
%0 Journal Article
%T Seismic response study on a multi-span cable-stayed bridge scale model under multi-support excitations. Part II: numerical analysis
%A Rui Zhou
%A Zhou-hong Zong
%A Xue-yang Huang
%A Zhang-hua Xia
%J Journal of Zhejiang University SCIENCE A
%V 15
%N 6
%P 405-418
%@ 1673-565X
%D 2014
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1300340
TY - JOUR
T1 - Seismic response study on a multi-span cable-stayed bridge scale model under multi-support excitations. Part II: numerical analysis
A1 - Rui Zhou
A1 - Zhou-hong Zong
A1 - Xue-yang Huang
A1 - Zhang-hua Xia
J0 - Journal of Zhejiang University Science A
VL - 15
IS - 6
SP - 405
EP - 418
%@ 1673-565X
Y1 - 2014
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1300340
Abstract: In recent years, local component destruction, collapse failure and the control of long-span cable-stayed bridges under strong multi-support excitations have received increasing attention. In this paper, two kinds of nonlinear finite element (FE) models are established to simulate the seismic responses and failure modes of a multi-span cable-stayed bridge scale model under multi-support excitations. One is the single girder model which is used to simulate the seismic response during four wave excitations. It can be concluded that the FE analysis results of the scale model are a good fit with those from the shaking table tests. The other one is the explicit dynamic FE model which is used to simulate the collapse and failure mechanisms of the scale model during strong earthquakes. The aggressive failure processes of the scale model under two different types of wave excitations were compared to reproduce the mechanisms in which the bearing at the middle tower failed under the El Centro (EC) wave (4.0 m/s2), and we also observed the connection failure of the cables and towers, and the elements failure of the upper beam in the middle tower, which occurred successively under a Jiangxin (JX) wave (4.0 m/s2). This simulation may be referenced as the basis for the collapse failure of a cable-stayed bridge with a large span during a strong earthquake.
Open peer comments: Debate/Discuss/Question/Opinion
<1>