Full Text:   <2392>

Summary:  <1848>

CLC number: TM911.4

On-line Access: 2014-10-08

Received: 2014-01-06

Revision Accepted: 2014-05-07

Crosschecked: 2014-09-29

Cited: 1

Clicked: 5517

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2014 Vol.15 No.10 P.829-839


Control-oriented dynamic identification modeling of a planar SOFC stack based on genetic algorithm-least squares support vector regression*

Author(s):  Hai-bo Huo1, Yi Ji1, Xin-jian Zhu2, Xing-hong Kuang1, Yu-qing Liu1

Affiliation(s):  1. Department of Electrical Engineering, Shanghai Ocean University, Shanghai 201306, China; more

Corresponding email(s):   hbhuo@shou.edu.cn

Key Words:  Solid oxide fuel cell (SOFC), Control-oriented, Dynamic modeling, Least squares support vector regression (LSSVR)

Hai-bo Huo, Yi Ji, Xin-jian Zhu, Xing-hong Kuang, Yu-qing Liu. Control-oriented dynamic identification modeling of a planar SOFC stack based on genetic algorithm-least squares support vector regression[J]. Journal of Zhejiang University Science A, 2014, 15(10): 829-839.

@article{title="Control-oriented dynamic identification modeling of a planar SOFC stack based on genetic algorithm-least squares support vector regression",
author="Hai-bo Huo, Yi Ji, Xin-jian Zhu, Xing-hong Kuang, Yu-qing Liu",
journal="Journal of Zhejiang University Science A",
publisher="Zhejiang University Press & Springer",

%0 Journal Article
%T Control-oriented dynamic identification modeling of a planar SOFC stack based on genetic algorithm-least squares support vector regression
%A Hai-bo Huo
%A Yi Ji
%A Xin-jian Zhu
%A Xing-hong Kuang
%A Yu-qing Liu
%J Journal of Zhejiang University SCIENCE A
%V 15
%N 10
%P 829-839
%@ 1673-565X
%D 2014
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1400011

T1 - Control-oriented dynamic identification modeling of a planar SOFC stack based on genetic algorithm-least squares support vector regression
A1 - Hai-bo Huo
A1 - Yi Ji
A1 - Xin-jian Zhu
A1 - Xing-hong Kuang
A1 - Yu-qing Liu
J0 - Journal of Zhejiang University Science A
VL - 15
IS - 10
SP - 829
EP - 839
%@ 1673-565X
Y1 - 2014
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1400011

For predicting the voltage and temperature dynamics synchronously and designing a controller, a control-oriented dynamic modeling study of the solid oxide fuel cell (SOFC) derived from physical conservation laws is reported, which considers both the electrochemical and thermal aspects of the SOFC. Here, the least squares support vector regression (LSSVR) is employed to model the nonlinear dynamic characteristics of the SOFC. In addition, a genetic algorithm (GA), through comparing a simulated annealing algorithm (SAA) with a 5-fold cross-validation (5FCV) method, is preferably chosen to optimize the LSSVR’s parameters. The validity of the proposed LSSVR with GA (GA-LSSVR) model is verified by comparing the results with those obtained from the physical model. Simulation studies further indicate that the GA-LSSVR model has a higher modeling accuracy than the LSSVR with SAA (SAA-LSSVR) and the LSSVR with 5FCV (5FCV-LSSVR) models in predicting the voltage and temperature transient behaviors of the SOFC. Furthermore, the convergence speed of the GA-LSSVR model is relatively fast. The availability of this GA-LSSVR identification model can aid in evaluating the dynamic performance of the SOFC under different conditions and can be used for designing valid multivariable control schemes.


研究方法: 1. 分析SOFC的电化学和能量平衡子模型。2. 利用所选择的最优LSSVR参数,建立了SOFC的GA-LSSVR动态辨识模型。通过仿真分析和比较,验证了所建模型的有效性 (图3和4)。3. 利用所建模型的预测结果,与模拟退火算法优化最小二乘支持向量回归机(SAA-LSSVR)和5折交叉验证最小二乘支持向量回归机(5FCV-LSSVR)模型的预测结果进行了比较,表明所建立的GA-LSSVR模型具有较高的预测精度(表3和4)。

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article


[1] Bove, R., Ubertini, S., 2006. Modeling solid oxide fuel cell operation: approaches, techniques and results. Journal of Power Sources, 159(1):543-559. 

[2] Cao, H.L., Deng, Z.H., Li, X., 2010. Dynamic modeling of electrical characteristics of solid oxide fuel cells using fractional derivatives. International Journal of Hydrogen Energy, 35(4):1749-1758. 

[3] Chakraborty, U.K., 2011. An error in solid oxide fuel cell stack modeling. Energy, 36(2):801-802. 

[4] Entchev, E., Yang, L.B., 2007. Application of adaptive neuro-fuzzy inference system techniques and artificial neural networks to predict solid oxide fuel cell performance in residential microgeneration installation. Journal of Power Sources, 170(1):122-129. 

[5] Ge, Z.Q., Song, Z.H., 2008. Online monitoring of nonlinear multiple mode processes based on adaptive local model approach. Control Engineering Practice, 16(12):1427-1437. 

[6] Hajimolana, S.A., Tonekabonimoghadam, S.M., Hussain, M.A., 2013. Thermal stress management of a solid oxide fuel cell using neural network predictive control. Energy, 62:320-329. 

[7] Hsu, C.C., Wu, C.H., Chen, S.C., 2006. Dynamically optimizing parameters in support vector regression: an application of electricity load forecasting. , Proceedings of the 39th Annual Hawaii International Conference on System Sciences, Kauai, USA, 30c:30c

[8] Huo, H.B., Zhong, Z.D., Zhu, X.J., 2008. Nonlinear dynamic modeling for a SOFC stack by using a Hammerstein model. Journal of Power Sources, 175(1):441-446. 

[9] Jiang, J.H., Li, X., Deng, Z.H., 2013. Control-oriented dynamic model optimization of steam reformer with an improved optimization algorithm. International Journal of Hydrogen Energy, 38(26):11288-11302. 

[10] Jurado, F., 2004. Modeling SOFC plants on the distribution system using identification algorithms. Journal of Power Sources, 129(2):205-215. 

[11] Kazempoor, P., Ommi, F., Dorer, V., 2011. Response of a planar solid oxide fuel cell to step load and inlet flow temperature changes. Journal of Power Sources, 196(21):8948-8954. 

[12] Kim, Y., Son, M., Lee, I.B., 2011. Numerical study of a planar solid oxide fuel cell during heat-up and start-up operation. Industrial and Engineering Chemistry Research, 50(3):1360-1368. 

[13] Li, J., Kang, Y.W., Cao, G.Y., 2008. Numerical simulation of a direct internal reforming solid oxide fuel cell using computational fluid dynamics method. Journal of Zhejiang University-SCIENCE A, 9(7):961-969. 

[14] Lu, N., Li, Q., Sun, X., 2006. The modeling of a standalone solid-oxide fuel cell auxiliary power unit. Journal of Power Sources, 161(2):938-948. 

[15] Mao, W.T., Yan, G.R., Dong, L.L., 2011. Model selection for least squares support vector regressions based on small-world strategy. Expert Systems with Applications, 38(4):3227-3237. 

[16] Menon, V., Janardhanan, V.M., Tischer, S., 2012. A novel approach to model the transient behavior of solid-oxide fuel cell stacks. Journal of Power Sources, 214:227-238. 

[17] Murshed, A.M., Huang, B., Nandakumar, K., 2007. Control relevant modeling of planer solid oxide fuel cell system. Journal of Power Sources, 163(2):830-845. 

[18] Padulls, J., Ault, G.W., McDonald, J.R., 2000. An integrated SOFC plant dynamic model for power systems simulation. Journal of Power Sources, 86(1-2):495-500. 

[19] Qu, J., Zuo, M.J., 2012. An LSSVR-based algorithm for online system condition prognostics. Expert Systems with Applications, 39(5):6089-6102. 

[20] Salogni, A., Colonna, P., 2010. Modeling of solid oxide fuel cells for dynamic simulations of integrated systems. Applied Thermal Engineering, 30(5):464-477. 

[21] Sedghisigarchi, K., 2004.  Solid Oxide Fuel Cell as a Distributed Generator: Dynamic Modeling, Stability Analysis and Control. PhD Thesis, West Virginia University,Morgantown, USA :

[22] So-ryeok, O., Jing, S., Herb, D., 2013. Dynamic characteristics and fast load following of 5-kW class tubular solid oxide fuel cell/micro-gas turbine hybrid systems. International Journal of Energy Research, 37(10):1242-1255. 

[23] Suykens, J.A.K., van Gestel, T., de Brabanter, J., 2002.  Least Squares Support Vector Machines. World Scientific,Singapore :98-114. 

[24] Wang, H., Li, E., Li, G.Y., 2011. Probability-based least square support vector regression metamodeling technique for crashworthiness optimization problems. Computational Mechanics, 47(3):251-263. 

[25] Wang, L.J., Zhang, H.S., Weng, S.L., 2008. Modeling and simulation of solid oxide fuel cell based on the volume-resistance characteristic modeling technique. Journal of Power Sources, 177(2):579-589. 

[26] Wu, X.J., Huang, Q., Zhu, X.J., 2011. Thermal modeling of a solid oxide fuel cell and micro gas turbine hybrid power system based on modified LS-SVM. International Journal of Hydrogen Energy, 36(1):885-892. 

[27] Xu, G.M., Huang, S.G., 2011. Runway incursion event forecast model based on LS-SVR with multi-kernel. Journal of Computers, 6(7):1346-1352. 

[28] Yan, G., 2009. Forecasting of freight volume based on support vector regression optimized by genetic algorithm. , The 2nd IEEE International Conference on Computer Science and Information Technology, Beijing, China, 550-553. :550-553. 

[29] Yang, C.C., Shieh, M.D., 2010. A support vector regression based prediction model of affective responses for product form design. Computers and Industrial Engineering, 59(4):682-689. 

[30] Yang, J., Li, X., Mou, H.G., 2009. Control-oriented thermal management of solid oxide fuel cells based on a modified Takagi-Sugeno fuzzy model. Journal of Power Sources, 188(2):475-482. 

[31] Yang, Z., Gu, X.S., Liang, X.Y., 2010. Genetic algorithm-least squares support vector regression based predicting and optimizing model on carbon fiber composite integrated conductivity. Materials and Design, 31(3):1042-1049. 

[32] Zhang, T.J., Feng, G., 2009. Rapid load following of an SOFC power system via stable fuzzy predictive tracking controller. IEEE Transactions on Fuzzy Systems, 17(2):357-371. 

Open peer comments: Debate/Discuss/Question/Opinion


Please provide your name, email address and a comment

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2022 Journal of Zhejiang University-SCIENCE