Full Text:   <2895>

Summary:  <2008>

CLC number: X592

On-line Access: 2014-08-04

Received: 2014-06-02

Revision Accepted: 2014-06-22

Crosschecked: 2014-07-18

Cited: 8

Clicked: 5856

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2014 Vol.15 No.8 P.618-623

http://doi.org/10.1631/jzus.A1400159


Random amplified polymorphic DNA reveals that TiO2 nanoparticles are genotoxic to Cucurbita pepo *


Author(s):  Fabiola Moreno-Olivas1,4, Vincent U. Gant Jr.2, Kyle L. Johnson2, Jose R. Peralta-Videa1,3,4, Jorge L. Gardea-Torresdey1,3,4

Affiliation(s):  1. Depertment of Chemistry, The University of Texas at El Paso, El Paso, TX 79968, USA; more

Corresponding email(s):   fmoreno2@miners.utep.edu

Key Words:  Random amplified polymorphic DNA (RAPD), Titanium dioxide (TiO2), Nanoparticles (NPs), Genomic DNA, Zucchini


Fabiola Moreno-Olivas, Vincent U. Gant Jr. , Kyle L. Johnson, Jose R. Peralta-Videa, Jorge L. Gardea-Torresdey. Random amplified polymorphic DNA reveals that TiO2 nanoparticles are genotoxic to Cucurbita pepo[J]. Journal of Zhejiang University Science A, 2014, 15(8): 618-623.

@article{title="Random amplified polymorphic DNA reveals that TiO2 nanoparticles are genotoxic to Cucurbita pepo",
author="Fabiola Moreno-Olivas, Vincent U. Gant Jr. , Kyle L. Johnson, Jose R. Peralta-Videa, Jorge L. Gardea-Torresdey",
journal="Journal of Zhejiang University Science A",
volume="15",
number="8",
pages="618-623",
year="2014",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1400159"
}

%0 Journal Article
%T Random amplified polymorphic DNA reveals that TiO2 nanoparticles are genotoxic to Cucurbita pepo
%A Fabiola Moreno-Olivas
%A Vincent U. Gant Jr.
%A Kyle L. Johnson
%A Jose R. Peralta-Videa
%A Jorge L. Gardea-Torresdey
%J Journal of Zhejiang University SCIENCE A
%V 15
%N 8
%P 618-623
%@ 1673-565X
%D 2014
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1400159

TY - JOUR
T1 - Random amplified polymorphic DNA reveals that TiO2 nanoparticles are genotoxic to Cucurbita pepo
A1 - Fabiola Moreno-Olivas
A1 - Vincent U. Gant Jr.
A1 - Kyle L. Johnson
A1 - Jose R. Peralta-Videa
A1 - Jorge L. Gardea-Torresdey
J0 - Journal of Zhejiang University Science A
VL - 15
IS - 8
SP - 618
EP - 623
%@ 1673-565X
Y1 - 2014
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1400159


Abstract: 
Titanium dioxide nanoparticles (TiO2 NPs) are used in cosmetics, sunscreens, paints, and toothpaste, among other applications. These NPs are very stable and can be transported and dispersed in wastewater and biosolids. Animal species have shown negative reactions to TiO2 NPs. However, little is known about their toxicity in plants, specifically the possibility of genotoxic effects. In this study, we used a random amplified polymorphic DNA (RAPD) technique to study the genotoxic effects of TiO2 NPs on hydroponically cultivated zucchini (Cucurbita pepo) plants. Seeds were allowed to germinate for 7 d and plants were selected at random for individual and population studies. Four plants were selected for the individual study and 18 for the population study. RAPD profiles of TiO2 NPs treated plants showed differences in band intensity, loss of bands, or appearance of new bands, compared to untreated plants. To the authors’ knowledge, this is the first report of the genotoxic potential of TiO2 NPs in zucchini.

随机扩增多态性DNA技术研究发现二氧化钛纳米颗粒对西葫芦具有基因毒性

研究目的:二氧化钛(TiO2)纳米颗粒已经广泛应用于化妆品、防晒霜、涂料和牙膏等。这些纳米颗粒性质非常稳定,能在废水和生物固体中转移和分散。现有研究表明,TiO2纳米颗粒对动物正常生理活动具有毒性等负面作用。但是,它们对植物是否具有毒性特别是是否会产生植物基因毒性至今尚不清楚。因此,本文使用随机扩增多态性DNA技术研究TiO2纳米颗粒是否对西葫芦具有基因毒性,为TiO2纳米颗粒排放进入环境后的潜在植物毒性风险评价提供依据。
创新要点:首次发现了TiO2纳米颗粒对西葫芦具有基因毒性。
重要结论:采用随机扩增多态性DNA技术,发现TiO2纳米颗粒污染处理的西葫芦样品与未处理样品的基因组DNA图谱相比,不仅在谱带强度有明显差异,而且存在谱带消失和新谱带产生现象,表明TiO2纳米颗粒对西葫芦具有基因毒性。
随机扩增多态性DNA技术;TiO2;纳米颗粒;基因组DNA;西葫芦;毒性

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

References

[1] Amaral, M.J., Carretero, M.A., Bicho, R.C., 2012. The use of a lacertid lizard as a model for reptile ecotoxicology studies—part 1 field demographics and morphology. Chemosphere, 87(7):757-764. 


[2] Cenkci, S., Yildiz, M., Ciğerci, ..H., 2009. Toxic chemicals-induced genotoxicity detected by random amplified polymorphic DNA (RAPD) in bean (Phaseolus vulgaris L.) seedlings. Chemosphere, 76(7):900-906. 


[3] Darlington, T.K., Neigh, A.M., Spencer, M.T., 2009. Nanoparticle characteristics affecting environmental fate and transport through soil. Environmental Toxicology and Chemistry, 28(6):1191-1199. 


[4] Gottschalk, F., Sonderer, T., Scholz, R.W., 2009. Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions. Environonmental Science & Technology, 43(24):9216-9222. 


[5] Hong, J., Peralta-Videa, J.R., Gardea-Torresdey, J.L., 2013. Nanomaterials in agricultural production: benefits and possible threats. Sustainable Nanotechnology and the Environment: Advances and Achievements. ACS Symposium Series, 1124:73-90. 

[6] Johnson, A.C., Bowes, M.J., Crossley, A., 2011. An assessment of the fate, behaviour and environmental risk associated with sunscreen TiO2 nanoparticles in UK field scenarios. Science of the Total Environment, 409(13):2503-2510. 


[7] Kang, S.J., Kim, B.M., Lee, Y.J., 2008. Titanium dioxide nanoparticles trigger p53-mediated damage response in peripheral blood lymphocytes. Environmental and Molecular Mutagenesis, 49(5):399-405. 


[8] Keller, A.A., Wang, H., Zhou, D., 2010. Stability and aggregation of metal oxide nanoparticles in natural aqueous media. Environmental Science and Technology, 44(6):1962-1967. 


[9] Keller, A.A., McFerran, S., Lazareva, A., 2013. Global life cycle releases of engineered nanomaterials. Journal of Nanoparticle Research, 15(6):1692


[10] Kumari, M., Mukherjee, A., Chandrasekaran, N., 2009. Genotoxicity of silver nanoparticles in Allium cepaScience of the Total Environment, 407(19):5243-5246. 


[11] Landa, P., Vankova, R., Andrlova, J., 2012. Nanoparticle-specific changes in Arabidopsis thaliana gene expression after exposure to ZnO, TiO2, and fullerene soot. Journal of Hazardous Materials, 241-242:55-62. 


[12] Liu, W., Li, P.J., Qi, X.M., 2005. DNA changes in barley (Hordeum vulgare) seedlings induced by cadmium pollution using RAPD analysis. Chemosphere, 61(2):158-167. 


[13] Liu, W., Yang, Y.S., Li, P.J., 2009. Risk assesment of cadmium-contaminated soil on plant DNA damage using RAPD and physiological indices. Journal of Hazardous Materials, 161(2-3):878-883. 


[14] Lpez-Moreno, M.L., de la Rosa, G., Hernndez-Viezcas, J., 2010. Evidence of the differential biotransformation and genotoxicity of ZnO and CeO2 nanoparticles on soybean (Glycine max) plants. Environmental Science and Technology, 44(19):7315-7320. 


[15] MacPherson, J.M., Gajadhar, A.A., 1992. Random amplified polymorphic DNA. Parasitology Today, 8(7):235


[16] Peralta-Videa, J.R., Gardea-Torresdey, J.L., Gomez, E., 2002. Effect of mixed cadmium, copper, nickel and zinc at different pHs upon alfalfa growth and heavy metal uptake. Environmental Pollution, 119(3):291-301. 


[17] Petković, J., Zegura, B., Stevanović, M., 2011. DNA damage and alterations in expression of DNA damage responsive genes induced by TiO2 nanoparticles in human hepatoma HepG2 cells. Nanotoxicology, 5(3):341-353. 


[18] Robichaud, C.O., Uyar, A.E., Darby, M.R., 2009. Estimates of upper bounds and trends in nano-TiO2 production as basis for exposure assessment. Environmental Science and Technology, 43(12):4227-4233. 


[19] Roco, M.C., 2011. The long view of nanotechnology development: the national nanotechnology initiative at 10 years. Journal of Nanoparticle Research, 13(2):427-445. 


[20] Roco, M.C., Mirkin, C.A., Hersam, M.C., 2010. Nanotechnology research directions for societal needs in 2020: retrospective and outlook. , Available from http://www.nano.gov/node/797,[Accessed on Oct. 29, 2013],:

[21] Servin, A.D., Morales, M.I., Castillo-Michel, H., 2013. Synchrotron verification of TiO2 accumulation in cucumber fruit: a possible pathway of TiO2 nanoparticle transfer from soil into the food chain. Environmental Science and Technology, 47(20):11592-11598. 


[22] Williams, L., Adams, W., 2007.  Nanotechnology Demystified. McGraw-Hill,New York, USA :4-5. 

[23] Xue, C., Wu, J., Lan, F., 2010. Nano titanium dioxide induces the generation of ROS and potential damage in HaCaT cells under UVA irradiation. Journal of Nanoscience and Nanotechnology, 10(12):8500-8507. 


[24] Zheng, L., Su, M., Wu, X., 2008. Antioxidant stress is promoted by nano-anatase in spinach chloroplasts under UV-B radiation. Biological Trace Element Research, 121(1):69-79. 



Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE