Full Text:   <2805>

Summary:  <2022>

CLC number: TU45

On-line Access: 2015-09-03

Received: 2014-12-20

Revision Accepted: 2015-07-27

Crosschecked: 2015-08-07

Cited: 6

Clicked: 4433

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Jin Yu

http://orcid.org/0000-0003-0088-7652

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2015 Vol.16 No.9 P.749-759

http://doi.org/10.1631/jzus.A1400362


Experimental investigation on mechanical properties and permeability evolution of red sandstone after heat treatments


Author(s):  Jin Yu, Shao-jie Chen, Xu Chen, Ya-zhou Zhang, Yan-yan Cai

Affiliation(s):  1Institute of Geotechnical Engineering, Huaqiao University, Xiamen 361021, China; more

Corresponding email(s):   bugyu0717@hqu.edu.cn

Key Words:  Heat treatment, Red sandstone, Triaxial compression test, Mechanical property, Permeability


Jin Yu, Shao-jie Chen, Xu Chen, Ya-zhou Zhang, Yan-yan Cai. Experimental investigation on mechanical properties and permeability evolution of red sandstone after heat treatments[J]. Journal of Zhejiang University Science A, 2015, 16(9): 749-759.

@article{title="Experimental investigation on mechanical properties and permeability evolution of red sandstone after heat treatments",
author="Jin Yu, Shao-jie Chen, Xu Chen, Ya-zhou Zhang, Yan-yan Cai",
journal="Journal of Zhejiang University Science A",
volume="16",
number="9",
pages="749-759",
year="2015",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1400362"
}

%0 Journal Article
%T Experimental investigation on mechanical properties and permeability evolution of red sandstone after heat treatments
%A Jin Yu
%A Shao-jie Chen
%A Xu Chen
%A Ya-zhou Zhang
%A Yan-yan Cai
%J Journal of Zhejiang University SCIENCE A
%V 16
%N 9
%P 749-759
%@ 1673-565X
%D 2015
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1400362

TY - JOUR
T1 - Experimental investigation on mechanical properties and permeability evolution of red sandstone after heat treatments
A1 - Jin Yu
A1 - Shao-jie Chen
A1 - Xu Chen
A1 - Ya-zhou Zhang
A1 - Yan-yan Cai
J0 - Journal of Zhejiang University Science A
VL - 16
IS - 9
SP - 749
EP - 759
%@ 1673-565X
Y1 - 2015
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1400362


Abstract: 
triaxial compression tests were carried out on red sandstone samples which had been previously subjected to heat treatments at 20, 200, 400, and 600 °C to study the change in properties and mechanical characteristics of the rock and the permeability (gas) evolution. Results show that: (1) the color of the sandstone changes from gray to brownish red with incremental change of temperature; (2) the strength of the rock increases with heat treatments from 20 to 200 °C and decreases with heat treatments from 200 to 600 °C, while the permeability of the rock after the heat treatments changes in the opposite trend; (3) from 20 to 200 °C, the primary pores and cracks close gradually, which results in the strength and elastic modulus increasing and permeability of the rock after the heat treatment decreasing; from 200 to 600 °C, the degradation of the sandstone causes the fall in strength and elastic modulus, and the rise in strain corresponding to the peak stress and permeability of the rock after the heat treatment; (4) the permeability in a stress-strain process varies with the evolution of cracks; (5) when the heating temperature is beyond 800 °C, the sandstone is seriously thermally damaged.

Research on mechanical properties and permeability evolution of sandstone after heat treatment is important to some rock engineering applications such as sandstone reservoir, oil and gas enhanced recovery, underground coal gasification. This paper described experimental results of triaxial compression testing with gas permeability measurement on red sandstones after thermal treatment of 200, 400 and 600°C. The results are very interesting.

热处理后红砂岩力学性能及渗透性演化规律三轴试验研究

目的:研究高温热开裂后红砂岩的物理力学性能和渗透性的量化变化规律。
创新点:1. 相比于传统液体稳态流渗透率测试法耗时多的缺点,本文通过氮气渗透方式,可快速获得低渗透率岩样的稳态流渗透率;2. 从裂隙体积变化角度,分析不同温度热开裂红砂岩在三轴压缩条件下的各裂隙发展阶段,讨论其与渗透性演化的 关系。
方法:1. 通过纵波波速测试和带渗透性实时监测的三轴压缩试验等手段,获得热处理后红纱岩基本物理力学性质参数(表1和表2)、不同围压下的全应力-应变关系曲线、轴向应变-体变关系曲线以及渗透率变化曲线(图4和图8);2. 通过理论分析和计算,获得轴向应变与裂隙体变的关系曲线(图9),分析裂隙演化5个阶段中渗透率的演化规律。
结论:1. 由20到200 °C,红砂岩原生孔隙和裂隙发生闭合,增加了试样密实度,并引起强度和弹模的提高以及初始渗透率的降低;从200到600 °C,红砂岩内部结构逐渐劣化,导致强度和弹模降低,峰值应变和初始渗透率提高;2. 加载过程中试样渗透率随裂隙的演化而变化,裂隙演化可分为压密、线弹性变形、裂隙稳定发展、宏观剪切破坏和应变软化5个阶段。这5个阶段中渗透率变化趋势不同;3. 当受热温度继续增大至800 °C时,红砂岩出现严重的裂纹致使其破坏。

关键词:热处理;红砂岩;三轴压缩试验;力学性能;渗透性

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Abdulagatova, Z., Abdulagatov, I.M., Emirov, V.N., 2009. Effect of temperature and pressure on the thermal conductivity of sandstone. International Journal of Rock Mechanics and Mining Sciences, 46(6):1055-1071.

[2]Brace, W.F., Walsh, J.B., Frangos, W.T., 1968. Permeability of granite under high pressure. Journal of Geophysical Research, 73(6):2225-2236.

[3]Cai, M., Kaiser, P.K., Tasaka, Y., et al., 2004. Generalized crack initiation and crack damage stress thresholds of brittle rock masses near underground excavations. International Journal of Rock Mechanics and Mining Sciences, 41(5):833-847.

[4]Chaki, S., Takarli, M., Agbodjan, W.P., 2008. Influence of thermal damage on physical properties of a granite rock: porosity, permeability and ultrasonic wave evolutions. Construction and Building Materials, 22(7):1456-1461.

[5]Chen, L.J., Zhao, H.B., Gu, H.T., et al., 2005. Study on microstructure of coal roof sandstone under high temperature. Journal of China University of Mining and Technology, 34(4):443-446 (in Chinese).

[6]Fortin, J., Schubnel, A., Guéguen, Y., 2005. Elastic wave velocities and permeability evolution during compaction of Bleurswiller sandstone. International Journal of Rock Mechanics and Mining Sciences, 42(7-8):873-889.

[7]Fortin, J., Stanchits, S., Vinciguerra, S., et al., 2011. Influence of thermal and mechanical cracks on permeability and elastic wave velocities in a basalt from Mt. Etna volcano subjected to elevated pressure. Tectonophysics, 503(1-2):60-74.

[8]Géraud, Y., Mazerolle, F., Raynaud, A., 1992. Comparison between connected and overall porosity of thermally stressed granites. Journal of Structural Geology, 14(8-9):981-990.

[9]Guéguen, Y., Schubnel, A., 2003. Elastic wave velocities and permeability of cracked rocks. Tectonophysics, 370(1-4):163-176.

[10]Kapusta, K., Stańczyk, K., Wiatowski, M., et al., 2013. Environmental aspects of a field-scale underground coal gasification trial in a shallow coal seam at the Experimental Mine Barbara in Poland. Fuel, 113:196-208.

[11]Luo, W., Qin, Y.P., Zhang, M.M., et al., 2011. Test study on permeability properties of the sandstone specimen under triaxial stress condition. Procedia Engineering, 26:173-178.

[12]Mao, X.B., Zhang, L.Y., Li, T.Z., et al., 2009. Properties of failure mode and thermal damage for limestone at high temperature. Mining Science and Technology, 19(3):290-294.

[13]Martin, C.D., 1993. The Strength of Massive Lac du Bonnet Granite around Underground Openings. PhD Thesis, University of Manitoba, Manitoba, Canada.

[14]McKinley, I.G., Neall, F.B., Kawamura, H., et al., 2006. Geochemical optimisation of a disposal system for high-level radioactive waste. Journal of Geochemical Exploration, 90(1-2):1-8.

[15]Minchener, A.J., 2005. Coal gasification for advanced power generation. Fuel, 84(17):2222-2235.

[16]Monfared, M., Delage, P., Sulem, J., et al., 2011. A new hollow cylinder triaxial cell to study the behavior of geo-materials with low permeability. International Journal of Rock Mechanics and Mining Sciences, 48(4):637-649.

[17]Ranjith, P.G., Daniel, R.V., Bai, J.C., et al., 2012. Transformation plasticity and the effect of temperature on the mechanical behaviour of Hawkesbury sandstone at atmospheric pressure. Engineering Geology, 151:120-127.

[18]Scheidegger, A.E., 1974. The Physics of Flow through Porous Media. University of Toronto Press, Toronto, Canada, p.102.

[19]Seibt, P., Kellner, T., 2003. Practical experience in the reinjection of cooled thermal waters back into sandstone reservoirs. Geothermics, 32(4-6):733-741.

[20]Sengun, N., 2014. Influence of thermal damage on the physical and mechanical properties of carbonate rocks. Arabian Journal of Geosciences, 7(12):5543-5551.

[21]Shafiei, A., Dusseault, M.B., 2013. Geomechanics of thermal viscous oil production in sandstones. Journal of Petroleum Science and Engineering, 103:121-139.

[22]Shang, X.Y., Zhou, G.Q., Lu, Y., 2015. Stress-dependent undrained shear behavior of remolded deep clay in East China. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 16(3):171-181.

[23]Takarli, M., Prince-Agbodjan, W., 2008. Temperature effects on physical properties and mechanical behavior of granite: experimental investigation of material damage. Journal of ASTM International, 5(3):JAI100464.

[24]Tian, H., Kempka, T., Xu, N.X., et al., 2012. Physical properties of sandstones after high temperature treatment. Rock Mechanics and Rock Engineering, 45(6):1113-1117.

[25]Timoshenko, S., Goodier, J.N., 1951. Theory of Elasticity. McGraw-Hill Book Company, New York, USA, p.7.

[26]Ulusay, R., Hudson, J.A., 2007. The complete ISRM suggested methods for rock characterization, testing and monitoring: 1974-2006. ISRM Turkish National Group, Ankara, Turkey.

[27]Wu, X.D., Liu, J.R., Qin, J.S., 2003. Effects of thermal treatment on wave velocity as well as porosity and permeability of rock. Journal of China University of Petroleum (Edition of Natural Sciences), 27(4):70-72 (in Chinese).

[28]Wu, Z., Qin, B.D., Chen, L.J., et al., 2005. Experimental study on mechanical character of sandstone of the upper plank of coal bed under high temperature. Chinese Journal of Rock Mechanics and Engineering, 24(11):1863-1867 (in Chinese).

[29]Yang, L.H., Zhang, X., Liu, S.Q., et al., 2008. Field test of large-scale hydrogen manufacturing from underground coal gasification (UCG). International Journal of Hydrogen Energy, 33(4):1275-1285.

[30]Yin, T.B., Li, X.B., Yin, Z.Q., et al., 2012. Study and comparison of mechanical properties of sandstone under static and dynamic loadings after high temperature. Chinese Journal of Rock Mechanics and Engineering, 31(2):273-279 (in Chinese).

[31]Zou, C.N., Zhu, R.K., Liu, K.Y., et al., 2012. Tight gas sandstone reservoirs in China: characteristics and recognition criteria. Journal of Petroleum Science and Engineering, 88-89:82-91.

[32]Zuo, J.P., Xie, H.P., Zhou, H.W., 2012. Investigation of meso-failure behavior of rock under thermal-mechanical coupled effects based on high temperature SEM. Science China Physics, Mechanics & Astronomy, 55(10):1855-1862.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE