Full Text:   <2709>

Summary:  <2105>

CLC number: TH137.5; TP242.3

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2016-05-09

Cited: 1

Clicked: 4502

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Xiao-ping Ouyang

http://orcid.org/0000-0002-7763-8622

Bo-qian Fan

http://orcid.org/0000-0003-2974-0603

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2016 Vol.17 No.6 P.454-467

http://doi.org/10.1631/jzus.A1600034


A novel multi-objective optimization method for the pressurized reservoir in hydraulic robotics


Author(s):  Xiao-ping Ouyang, Bo-qian Fan, Hua-yong Yang, Shuo Ding

Affiliation(s):  State Key Laboratory of Fluid Power and Mechatronic Systems, , 310027,

Corresponding email(s):   felix.zju@gmail.com

Key Words:  Hydraulic driven robots, Multi-objective optimal design, Interactive decision-making, Pressurized reservoir


Xiao-ping Ouyang, Bo-qian Fan, Hua-yong Yang, Shuo Ding. A novel multi-objective optimization method for the pressurized reservoir in hydraulic robotics[J]. Journal of Zhejiang University Science A, 2016, 17(6): 454-467.

@article{title="A novel multi-objective optimization method for the pressurized reservoir in hydraulic robotics",
author="Xiao-ping Ouyang, Bo-qian Fan, Hua-yong Yang, Shuo Ding",
journal="Journal of Zhejiang University Science A",
volume="17",
number="6",
pages="454-467",
year="2016",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1600034"
}

%0 Journal Article
%T A novel multi-objective optimization method for the pressurized reservoir in hydraulic robotics
%A Xiao-ping Ouyang
%A Bo-qian Fan
%A Hua-yong Yang
%A Shuo Ding
%J Journal of Zhejiang University SCIENCE A
%V 17
%N 6
%P 454-467
%@ 1673-565X
%D 2016
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1600034

TY - JOUR
T1 - A novel multi-objective optimization method for the pressurized reservoir in hydraulic robotics
A1 - Xiao-ping Ouyang
A1 - Bo-qian Fan
A1 - Hua-yong Yang
A1 - Shuo Ding
J0 - Journal of Zhejiang University Science A
VL - 17
IS - 6
SP - 454
EP - 467
%@ 1673-565X
Y1 - 2016
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1600034


Abstract: 
The pressurized reservoir is a closed hydraulic tank which plays a significant role in enhancing the capabilities of hydraulic driven robotics. The spring pressurized reservoir adopted in this paper requires comprehensive performance, such as weight, size, fluid volume, and pressure, which is hard to balance. A novel interactive multi-objective optimization approach, the feasible space tightening method, is proposed, which is efficient in solving complicated engineering design problems where multiple objectives are determined by multiple design variables. This method provides sufficient information to the designer by visualizing the performance trends within the feasible space as well as its relationship with the design variables. A step towards the final solution could be made by raising the threshold on performance indicators interactively, so that the feasible space is reduced and the remaining solutions are more preferred by the designer. With the help of this new method, the preferred solution of a spring pressurized reservoir is found. Practicability and efficiency are demonstrated in the optimal design process, where the solution is determined within four rounds of interaction between the designer and the optimization program. Tests on the designed prototype show good results.

The paper is interesting, properly written and useful. Pressurized reservoir will play an important role in enhancing the capabilities of hydraulic driven robotics. The purpose of this paper is to evaluate a novel interactive multi-objective optimization approach named feasible space tightening method, which is efficient in solving complicated engineering design problems where multiple objectives are determined by multiple design variables.

液压机器人增压油箱的多目标优化方法研究

目的:增压油箱是提高液压机器人动力源功率密度的一个关键元件。高集成度的增压油箱设计涉及6个设计变量和6个性能指标,必须采用合适的方法进行多目标优化。
创新点:1. 提出一种在设计变量平面上投影性能曲面的多目标优化方法,通过设定性能阈值缩小可行解范围并获得决策;2. 将增压油箱应用于液压机器人,提高液压机器人的功率密度和性能。
方法:1. 采用活塞-弹簧增压的原理来实现机器人液压系统增压,分析增压油箱的容量、质量和增压压力等性能,确定增压油箱设计为多目标优化问题。2. 通过在设计变量平面上的投影曲面,分析增压油箱性能指标与设计变量之间的关系;将目标函数阈值引入设计限制条件,通过控制待优化的指标缩小可行域,获得油箱设计的最终解。3. 按优化设计参数加工油箱样机,并在液压机器人动力源上进行测试。
结论:1. 增压油箱优化结果表明本文提出的设计方法可帮助设计者获得所需的最优解;2. 增压油箱样机的应用测试结果表明所研制的增压油箱在液压机器人系统中运行可靠。

关键词:液压机器人;多目标优化;交互式决策;增压油箱

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Amundson, K., Raade, J., Harding, N., et al., 2006. Development of hybrid hydraulic–electric power units for field and service robots. Advanced Robotics, 20(9):1015-1034.

[2]Blasco, X., Herrero, J., Sanchis, J., et al., 2008. A new graphical visualization of n-dimensional Pareto front for decision-making in multiobjective optimization. Information Sciences, 178(20):3908-3924.

[3]Branke, J., Greco, S., Slowinski, R., et al., 2015. Learning value functions in interactive evolutionary multiobjective optimization. IEEE Transactions on Evolutionary Computation, 19(1):88-102.

[4]Branke, J., Corrente, S., Greco, S., et al., 2016. Using Choquet integral as preference model in interactive evolutionary multiobjective optimization. European Journal of Operational Research, 250(3):884-901.

[5]Chaudhuri, S., Deb, K., 2010. An interactive evolutionary multi-objective optimization and decision making procedure. Applied Soft Computing, 10(2):496-511.

[6]Coello, C.A.C., 2000. Handling preferences in evolutionary multiobjective optimization: a survey. Proceedings of the Congress on Evolutionary Computation, La Jolla, CA, USA, p.30-37.

[7]Deb, K., Pratap, A., Agarwal, S., et al., 2002. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2):182-197.

[8]Jacobsen, S., 2007. On the development of XOS, a powerful exoskeletal robot. IEEE/RSJ International Conference on Intelligent Robots and Systems, San Diego, CA, USA.

[9]Klamroth, K., Miettinen, K., 2008. Integrating approximation and interactive decision making in multicriteria optimization. Operations Research, 56(1):222-234.

[10]Kollat, J.B., Reed, P., 2007. A framework for visually interactive decision-making and design using evolutionary multi-objective optimization (VIDEO). Environmental Modelling & Software, 22(12):1691-1704.

[11]Pedro, L.R., Takahashi, R.H., 2013. Decision-maker preference modeling in interactive multiobjective optimization. In: Evolutionary Multi-criterion Optimization, Springer Berlin Heidelberg, p.811-824.

[12]Rachmawati, L., Srinivasan, D., 2006. Preference incorporation in multi-objective evolutionary algorithms: a survey. IEEE Congress on Evolutionary Computation, Vancouver, BC, USA, p.962-968.

[13]Raibert, M., Blankespoor, K., Nelson, G., et al., 2008. Bigdog, the rough-terrain quadruped robot. Proceedings of the 17th World Congress, COEX, South Korea, p.10822-10825.

[14]Semini, C., Tsagarakis, N.G., Guglielmino, E., et al., 2011. Design of HyQ–a hydraulically and electrically actuated quadruped robot. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 225(6):831-849.

[15]Shigley, J.E., Mischke, C.R., Budynas, R.G., et al., 1989. Mechanical Engineering Design. McGraw-Hill, New York, USA.

[16]Sinha, A., Korhonen, P., Wallenius, J., et al., 2014. An interactive evolutionary multi-objective optimization algorithm with a limited number of decision maker calls. European Journal of Operational Research, 233(3):674-688.

[17]Totten, G.E., Bishop, R., 1999. The Hydraulic Pump Inlet Condition: Impact on Hydraulic Pump Cavitation Potential. Technical Paper No. 1999-01-1877.

[18]Vacca, A., Klop, R., Ivantysynova, M., 2010. A numerical approach for the evaluation of the effects of air release and vapour cavitation on effective flow rate of axial piston machines. International Journal of Fluid Power, 11(1):33-45.

[19]Yang, H.Y., Pan, M., 2015. Engineering research in fluid power: a review. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 16(6):427-442.

[20]Yang, H.Y., Feng, B., Gong, G.F., 2011. Measurement of effective fluid bulk modulus in hydraulic system. Journal of Dynamic Systems, Measurement, and Control, 133(6):061021.

[21]Zitzler, E., Thiele, L., 1998. Multiobjective optimization using evolutionary algorithms—a comparative case study. In: Parallel Problem Solving from Nature—PPSN V. Springer Berlin Heidelberg, p.292-301.

[22]Zoss, A.B., Kazerooni, H., Chu, A., 2006. Biomechanical design of the Berkeley lower extremity exoskeleton (BLEEX). IEEE/ASME Transactions on Mechatronics, 11(2):128-138.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE