Full Text:   <1603>

Summary:  <1684>

CLC number: U41; TK01

On-line Access: 2016-07-05

Received: 2016-02-18

Revision Accepted: 2016-04-19

Crosschecked: 2016-06-25

Cited: 1

Clicked: 3283

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Junliang Tao

http://orcid.org/0000-0002-3772-3099

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2016 Vol.17 No.7 P.502-511

http://doi.org/10.1631/jzus.A1600166


Energy harvesting from pavement via polyvinylidene fluoride: hybrid piezo-pyroelectric effects


Author(s):  Junliang Tao, Jie Hu

Affiliation(s):  Department of Civil Engineering, The University of Akron, ASEC 210, Akron, OH 44325-3905, USA

Corresponding email(s):   jtao2@uakron.edu

Key Words:  Energy harvesting, Pavement, Piezoelectric, Pyroelectric, Hybrid


Junliang Tao, Jie Hu. Energy harvesting from pavement via polyvinylidene fluoride: hybrid piezo-pyroelectric effects[J]. Journal of Zhejiang University Science A, 2016, 17(7): 502-511.

@article{title="Energy harvesting from pavement via polyvinylidene fluoride: hybrid piezo-pyroelectric effects",
author="Junliang Tao, Jie Hu",
journal="Journal of Zhejiang University Science A",
volume="17",
number="7",
pages="502-511",
year="2016",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1600166"
}

%0 Journal Article
%T Energy harvesting from pavement via polyvinylidene fluoride: hybrid piezo-pyroelectric effects
%A Junliang Tao
%A Jie Hu
%J Journal of Zhejiang University SCIENCE A
%V 17
%N 7
%P 502-511
%@ 1673-565X
%D 2016
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1600166

TY - JOUR
T1 - Energy harvesting from pavement via polyvinylidene fluoride: hybrid piezo-pyroelectric effects
A1 - Junliang Tao
A1 - Jie Hu
J0 - Journal of Zhejiang University Science A
VL - 17
IS - 7
SP - 502
EP - 511
%@ 1673-565X
Y1 - 2016
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1600166


Abstract: 
In the USA, there are over 4 million miles (6 million km) of roadways and more than 250 million registered vehicles. Energy lost in the pavement system due to traffic-induced vibration and deformation is enormous. If effectively harvested, such energy can serve as an alternative sustainable energy source that can be easily integrated into the transportation system. It is well known that most piezoelectric materials are also pyroelectric materials, which convert temperature change into electricity. However, the potential of polyvinylidene fluoride (PVDF) as a hybrid piezo-pyroelectric energy harvester has been seldom studied. The uniqueness of this study lies in that the electrical responses of PVDF under coupled mechanical and thermal stimulations are investigated. Through a series of well controlled experiments, it is found that there exists an interesting coupling phenomenon between piezoelectric and pyroelectric effects of PVDF: the voltage generated by simultaneous mechanical and thermal stimulations is the algebraic sum of voltages generated by separate stimulations. This means that there is neither strengthening nor weakening coupling effect when the piezoelectric and pyroelectric phenomena are coupled. This also makes the modeling process of the hybrid piezoelectric and pyroelectric effect straightforward. An estimation of power generation through piezoelectric and pyroelectric effect is conducted, and the overall effects of temperature on hybrid piezo-pyroelectric energy harvesting are discussed.

This paper is valuable for pavement energy harvesting, because the hybrid piezo-pyroelectric of PVDF is analyzed.

路面能量收集:聚偏氟乙烯的混合压电-热释电效应

目的:研究聚偏氟乙烯的混合压电-热释电效应;评估混合压电-热释电效应在路面能量收集中的 潜力。
创新点:首次实验验证了混合压电-热释电效应可视为压电效应和热释电效应的代数总和,即压电效应和热释电效应相对独立,既不相互压制也不相互促进。
方法:通过分别控制机械荷载和热荷载,实验测定聚偏氟乙烯压电效应、热释电效应及混合压电-热释电效应(图1和2);根据实地交通量和气温变化,通过简化的混合压电-热释电能量收集解析模型,估算美国俄亥俄州东北部地区路面能量收集的潜力(图4)。
结论:混合压电-热释电效应可视为压电效应和热释电效应的代数总和;在聚偏氟乙烯路面能量收集的建模中应该同时考虑压电效应和热释电效应;以本文中所选地区和材料为例,热释电效应弱于压电效应;混合压电-热释电效应能量收集效率的提高有望通过新型的纳米复合材料实现。

关键词:压电;热释电;混合;路面;能量收集

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]AASHTO (American Association of State Highway and Transportation Officials), 1993. AASHTO Guide for Design of Pavement Structures. AASHTO, USA.

[2]Alamusi, Xue, J.M., Wu, L.K., et al., 2012. Evaluation of piezoelectric property of reduced graphene oxide (rGO)–poly (vinylidene fluoride) nanocomposites. Nanoscale, 4(22):7250-7255.

[3]Banan, M., Lal, R.B., Batra, A., 1992. Modified triglycine sulphate (TGS) single crystals for pyroelectric infrared detector applications. Journal of Materials Science, 27(9):2291-2297.

[4]Batra, A.K., Bhattacharjee, S., Chilvery, A.K., et al., 2011. Simulation of energy harvesting from roads via pyroelectricity. Journal of Photonics for Energy, 1(1):014001.

[5]Bowen, C.R., Taylor, J., Leboulbar, E., et al., 2014. Pyroelectric materials and devices for energy harvesting applications. Energy & Environmental Science, 7(12):3836-3856.

[6]Chen, K.S., 2014. Design, analysis, and experimental studies of a novel PVDF-based piezoelectric energy harvester with beating mechanisms. ASME International Mechanical Engineering Congress and Exposition, American Society of Mechanical Engineers, Montreal, Quebec, Canada, No. IMECE2014-36968.

[7]Cuadras, A., Gasulla, M., Ferrari, V., 2010. Thermal energy harvesting through pyroelectricity. Sensors and Actuators A: Physical, 158(1):132-139.

[8]Destruel, P., Soto Rojas, F., Tougne, D., 1984. Pressure and temperature dependence of the electromechanical properties of polarized polyvinylidene fluoride films. Journal of Applied Physics, 56(11):3298-3303.

[9]Dietze, M., Es-Souni, M., 2008. Structural and functional properties of screen-printed PZT-PVDF-TrFE composites. Sensors and Actuators A: Physical, 143(2):329-334.

[10]Faust, D., Lakes, R., 2015. Temperature and substrate dependence of piezoelectric sensitivity for PVDF films. Ferroelectrics, 481(1):1-9.

[11]Guthner, P., Ritter, T., Dransfeld, K., 1992. Temperature dependence of the piezoelectric constant of thin PVDF and P(VDF-TrFE) films. Ferroelectrics, 127:7-11.

[12]Guan, X., Zhang, Y., Li, H., et al., 2013. PZT/PVDF composites doped with carbon nanotubes. Sensors and Actuators A: Physical, 194:228-231.

[13]Hill, D., Agarwal, A., Tong, N., 2014. Assessment of Piezoelectric Materials for Roadway Energy Harvesting: Cost of Energy and Demonstration Roadmap. California Energy Commission Energy Research and Development Division Final Project Report, No. Cec-500-2013-007.

[14]Hu, Y., Hsu, W., Wang, Y., et al., 2014. Enhance the pyroelectricity of polyvinylidene fluoride by graphene-oxide doping. Sensors, 14(4):6877-6890.

[15]Huang, L., Lu, C., Wang, F., et al., 2014. Preparation of PVDF/graphene ferroelectric composite films by in situ reduction with hydrobromic acids and their properties. RSC Advances, 4(85):45220-45229.

[16]Huang, Y.H., 2003. Pavement Analysis and Design, 2nd Edition. Pearson, Upper Saddle River, New Jersey, USA, p.45-90.

[17]Kim, G.H., Hong, S.M., Seo, Y., 2009. Piezoelectric properties of poly (vinylidene fluoride) and carbon nanotube blends: β-phase development. Physical Chemistry Chemical Physics, 11(44):10506-10512.

[18]Levi, N., Czerw, R., Xing, S., et al., 2004. Properties of polyvinylidene difluoride-carbon nanotube blends. Nano Letters, 4(7):1267-1271.

[19]Li, X., Lu, S., Chen, X., et al., 2013. Pyroelectric and electrocaloric materials. Journal of Materials Chemistry C, 1(1):23-37.

[20]Luo, B., Wang, X., Wang, Y., et al., 2014. Fabrication, characterization, properties and theoretical analysis of ceramic/PVDF composite flexible films with high dielectric constant and low dielectric loss. Journal of Materials Chemistry A, 2(2):510-519.

[21]Malmonge, L.F., Malmonge, J.A., Sakamoto, W.K., 2003. Study of pyroelectric activity of PZT/PVDF-HFP composite. Materials Research, 6(4):469-473.

[22]Measurement Specialties Inc., 2013. Piezo Film Sensors Technical Manual. Available from http://www.meas-spec.com [Accessed in April, 2014].

[23]ODOT (Ohio Department of Transportation), 2015. Traffic Survey Report. Available from http://www.dot.state.oh.us/Divisions/Planning/TechServ/traffic/Pages/Traffic-Count-Reports-and-Maps.aspx [Accessed in July 2015].

[24]Rahman, M.A., Chung, G.S., 2013. Synthesis of PVDF-graphene nanocomposites and their properties. Journal of Alloys and Compounds, 581:724-730.

[25]Soedjatmiko, E., 1999. Characterization of Asphalt Layer Modulus for Indonesian Temperature Condition. MS Thesis, Institut Teknologi Bandung, Indonesia.

[26]Thomas, P., Varughese, K., Dwarakanath, K., et al., 2010. Dielectric properties of poly (vinylidene fluoride)/ CaCu3Ti4O12 composites. Composites Science and Technology, 70(3):539-545.

[27]Ueberschlag, P., 2001. PVDF piezoelectric polymer. Sensor Review, 21(2):118-126.

[28]Vaish, M., Sharma, M., Vaish, R., et al., 2015. Experimental study on waste heat energy harvesting using lead zirconate titanate (PZT-5H) pyroelectric ceramics. Energy Technology, 3(7):768-773.

[29]Xiong, H., Wang, L., Wang, D., et al., 2012. Piezoelectric energy harvesting from traffic induced deformation of pavements. International Journal of Pavement Research and Technology, 5(5):333-337.

[30]Xiong, R.G., 2013. The temperature-dependent domains, SHG effect and piezoelectric coefficient of TGS. Chinese Chemical Letters, 24:681-684.

[31]Zhang, R., Jiang, B., Cao, W., 2001. Elastic, piezoelectric, and dielectric properties of multidomain 0.67Pb(Mg1/3Nb2/3)O3–0.33PbTiO3 single crystals. Journal of Applied Physics, 90(7):3471-3475.

[32]Zhao, H., Yu, J., Ling, J., 2010. Finite element analysis of cymbal piezoelectric transducers for harvesting energy from asphalt pavement. Journal of the Ceramic Society of Japan, 118(1382):909-915.

[33]Zhao, H., Tao, Y., Niu, Y., et al., 2014. Harvesting energy from asphalt pavement by piezoelectric generator. Journal of Wuhan University of Technology-Material Science Education, 29(5):933-937.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2022 Journal of Zhejiang University-SCIENCE