CLC number: TM356
On-line Access: 2018-04-09
Received: 2016-04-25
Revision Accepted: 2016-09-08
Crosschecked: 2018-02-19
Cited: 0
Clicked: 7736
Eun-Jung Yoon, Jong-Tae Park, Chong-Gun Yu. Thermal energy harvesting circuit with maximum power point tracking control for self-powered sensor node applications[J]. Frontiers of Information Technology & Electronic Engineering, 2018, 19(2): 285-296.
@article{title="Thermal energy harvesting circuit with maximum power point tracking control for self-powered sensor node applications",
author="Eun-Jung Yoon, Jong-Tae Park, Chong-Gun Yu",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="19",
number="2",
pages="285-296",
year="2018",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1601181"
}
%0 Journal Article
%T Thermal energy harvesting circuit with maximum power point tracking control for self-powered sensor node applications
%A Eun-Jung Yoon
%A Jong-Tae Park
%A Chong-Gun Yu
%J Frontiers of Information Technology & Electronic Engineering
%V 19
%N 2
%P 285-296
%@ 2095-9184
%D 2018
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1601181
TY - JOUR
T1 - Thermal energy harvesting circuit with maximum power point tracking control for self-powered sensor node applications
A1 - Eun-Jung Yoon
A1 - Jong-Tae Park
A1 - Chong-Gun Yu
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 19
IS - 2
SP - 285
EP - 296
%@ 2095-9184
Y1 - 2018
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1601181
Abstract: We present a simple implementation of a thermal energy harvesting circuit with the maximum power point tracking (MPPT) control for self-powered miniature-sized sensor nodes. Complex start-up circuitry and direct current to direct current (DC-DC) boost converters are not required, because the output voltage of targeted thermoelectric generator (TEG) devices is high enough to drive the load applications directly. The circuit operates in the active/asleep mode to overcome the power mismatch between TEG devices and load applications. The proposed circuit was implemented using a 0.35-μm complementary metal-oxide semiconductor (CMOS) process. Experimental results confirmed correct circuit operation and demonstrated the performance of the MPPT scheme. The circuit achieved a peak power efficiency of 95.5% and an MPPT accuracy of higher than 99%.
[1]Arsalan M, Ouda MH, Marnat L, et al., 2013. A 5.2GHz, 0.5mW RF powered wireless sensor with dual on-chip antennas for implantable intraocular pressure monitoring. IEEE MTT-S Int Microwave Symp, p.1-4.
[2]Belleville M, Fanet H, Fiorini P, et al., 2010. Energy autonomous sensor systems: towards a ubiquitous sensor technology. Microelectron J, 41(11):740-745.
[3]Carlson EJ, Strunz K, Otis BP, 2010. 20 mV input boost converter with efficient digital control for thermoelectric energy harvesting. IEEE J Sol-State Circ, 45(4):741-750.
[4]Chen PH, Ishida K, Ikeuchi K, et al., 2011a. A 95 mV-startup step-up converter with Vth-tuned oscillator by fixed-charge programming and capacitor pass-on scheme. IEEE Int Solid-State Circuits Conf, p.216-217.
[5]Chen PH, Ishida K, Zhang X, et al., 2011b. A 80 mV input, fast startup dual-mode boost converter with charge-pumped pulse generator for energy harvesting. IEEE Asian Solid-State Circuits Conf, p.33-36.
[6]Cheng MH, Wu ZW, 2005. Low-power low-voltage reference using peaking current mirror circuit. Electron Lett, 41(10):572-573.
[7]Colomer-Farrarons J, Miribel-Catala P, Saiz-Vela A, et al., 2008. Power-conditioning circuitry for a self-powered system based on micro PZT generators in a 0.13 μm low-voltage low-power technology. IEEE Trans Ind Electron, 55(9):3249-3257.
[8]Doms I, Merken P, Hoof CV, et al., 2009. Capacitive power management circuit for micropower thermoelectric generators with a 1.4 μA controller. IEEE J Sol-State Circ, 44(10):2824-2833.
[9]Im JP, Wang SW, Lee KH, et al., 2012. A 40 mV transformer-reuse self-startup boost converter with MPPT control for thermoelectric energy harvesting. IEEE J Sol-State Circ, 47(12):3055-3067.
[10]Jang JH, Berdy DF, Lee JJ, et al., 2013. A wireless condition monitoring system powered by a sub-100 μW vibration energy harvester. IEEE Trans Circ Syst, 60(4):1082-1093.
[11]Kausar ASMZ, Reza AW, Saleh MU, et al., 2014. Energizing wireless sensor networks by energy harvesting systems: scopes, challenges and approaches. Renew Sustain Energy Rev, 38:973-989.
[12]Kim HS, Kim GH, Lee YM, et al., 2015. A 10.6 mm3 fully-integrated, wireless sensor node with 8GHz UWB transmitter. Symp on VLSI Circuits, p.202-203.
[13]Kim J, Kim C, 2013. A DC-DC boost converter with variation tolerant MPPT technique and efficient ZCS circuit for thermoelectric energy harvesting applications. IEEE Trans Power Electron, 28(8):3827-3833.
[14]Kim RY, Lai JS, 2008. A seamless mode transfer maximum power point tracking controller for thermoelectric generator applications. IEEE Trans Power Electron, 23(5): 2310-2318.
[15]Lee YM, Bang SY, Lee IH, et al., 2013. A modular 1 mm3 die-stacked sensing platform with low power I2C inter-die communication and multi-modal energy harvesting. IEEE J Sol-State Circ, 48(1):229-243.
[16]Leonov V, Fiorini P, Sedky S, et al., 2005. Thermoelectric MEMS generators as a power supply for a body area network. 13th Int Conf on Solid-State Sensors, Actuators and Microsystems, p.291-294.
[17]Lhermet H, Condemine C, Plissonnier M, et al., 2008. Efficient power management circuit: from thermal energy harvesting to above-IC microbattery energy storage. IEEE J Sol-State Circ, 43(1):246-255.
[18]Li W, Yao R, Guo L, 2009. A low power CMOS bandgap voltage reference with enhanced power supply rejection. 8th Int Conf on ASIC, p.300-304.
[19]Lu C, Tsui CY, Ki WH, 2011. Vibration energy scavenging system with maximum power tracking for micropower applications. IEEE Trans VLSI Syst, 19(11):2109-2119.
[20]Mansano AL, Li YJ, Bagga S, et al., 2016. An autonomous wireless sensor node with asynchronous ECG monitoring in 0.18 μm CMOS. IEEE Trans Biomed Circ Syst, 10(3): 602-611.
[21]Micropelt, 2018. Thin film Thermogenerator, MPG-D655. http://www.micropelt.com
[22]Morimura H, Oshima S, Matsunaga K, et al., 2014. Ultra-low-power circuit techniques for mm-size wireless sensor nodes with energy harvesting. IEICE Electron Exp, 11(20):1-12.
[23]Ramadass YK, Chandrakasan AP, 2011. A battery-less thermoelectric energy harvesting interface circuit with 35 mV startup voltage. IEEE J Sol-State Circ, 46(1):333-341.
[24]Seeman MD, Sanders SR, Rabaey JM, 2008. An ultra-low-power power management IC for energy-scavenged wireless sensor nodes. IEEE Power Electronics Specialists Conf, p.925-931.
[25]Strasser M, Aigner R, Lauterbach C, et al., 2003. Micro-machined CMOS thermoelectric generators as on-chip power supply. 12th Int Conf on Solid-State Sensors, Actuators and Microsystems, p.45-48.
[26]Weng PS, Tang HY, Ku PC, et al., 2013. 50 mV-input batteryless boost converter for thermal energy harvesting. IEEE J Sol-State Circ, 48(4):1031-1041.
[27]Yoon EJ, Yu CG, 2016. Power management circuits for self-powered systems based on micro-scale solar energy harvesting. Int J Electron, 103(3):516-529.
[28]Zhang Y, Zhang F, Shakhsheer Y, et al., 2013. A batteryless 19 μW MICS/ISM-band energy harvesting body sensor node SoC for ExG applications. IEEE J Sol-State Circ, 48(1):199-213.
Open peer comments: Debate/Discuss/Question/Opinion
<1>