Full Text:   <1242>

Summary:  <1100>

CLC number: V231

On-line Access: 2020-06-11

Received: 2019-07-23

Revision Accepted: 2020-01-21

Crosschecked: 2020-07-15

Cited: 0

Clicked: 1784

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Zhi-di Lei

https://orcid.org/0000-0003-2520-8302

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2020 Vol.21 No.9 P.721-733

http://doi.org/10.1631/jzus.A1900349


Operational mode transition in a rotating detonation engine


Author(s):  Zhi-di Lei, Zheng-wu Chen, Xiao-quan Yang, Jue Ding, Pei-fen Weng

Affiliation(s):  Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai Institute of Applied Mathematics and Mechanics, School of Mechanics and Engineering Science, Shanghai University, Shanghai 200072, China; more

Corresponding email(s):   quanshui@shu.edu.cn, dingjue_lu@shu.edu.cn

Key Words:  Rotating detonation engine, Chemical reaction, Multiple detonation waves, Stability


Zhi-di Lei, Zheng-wu Chen, Xiao-quan Yang, Jue Ding, Pei-fen Weng. Operational mode transition in a rotating detonation engine[J]. Journal of Zhejiang University Science A, 2020, 21(9): 721-733.

@article{title="Operational mode transition in a rotating detonation engine",
author="Zhi-di Lei, Zheng-wu Chen, Xiao-quan Yang, Jue Ding, Pei-fen Weng",
journal="Journal of Zhejiang University Science A",
volume="21",
number="9",
pages="721-733",
year="2020",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1900349"
}

%0 Journal Article
%T Operational mode transition in a rotating detonation engine
%A Zhi-di Lei
%A Zheng-wu Chen
%A Xiao-quan Yang
%A Jue Ding
%A Pei-fen Weng
%J Journal of Zhejiang University SCIENCE A
%V 21
%N 9
%P 721-733
%@ 1673-565X
%D 2020
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1900349

TY - JOUR
T1 - Operational mode transition in a rotating detonation engine
A1 - Zhi-di Lei
A1 - Zheng-wu Chen
A1 - Xiao-quan Yang
A1 - Jue Ding
A1 - Pei-fen Weng
J0 - Journal of Zhejiang University Science A
VL - 21
IS - 9
SP - 721
EP - 733
%@ 1673-565X
Y1 - 2020
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1900349


Abstract: 
The relationship between the number of detonation waves and the evolution process of the flow field in a rotating detonation engine was investigated through a numerical analysis. The simulations were based on the Euler equation and a detailed chemical reaction model. In the given engine model, the flow-field evolution became unstable when a single detonation wave was released. New detonation waves formed spontaneously, changing the operational mode from single-wave to four-wave. However, when two or three detonation waves were released, the flow field evolved in a quasi-steady manner. Further study revealed that the newly formed detonation wave resulted from an accelerated chemical reaction on the contact surface between the detonation products and the reactive mixture. To satisfy the stable propagation requirements of detonation waves, we proposed a parameter called NL, which can be compared with the number of detonation waves in the combustor to predict the evolution (quasi-stable or unstable) of the flow field. Finally, we verified the effectiveness of NL in a redesigned engine. This study may assist the operational mode control in rotating detonation engine experiments.

旋转爆轰波传播模式自发改变过程研究

目的:提出一种预测爆轰波传播模式自发改变的方法.
创新点:1. 揭示了流场内新爆轰波产生的机制; 2. 基于接触面化学反应特征时间提出了无量纲参数NL,可作为分析旋转爆轰流场稳定性的判据.
方法:以数值模拟为手段,应用基元反应建立化学非平衡流动的数学物理模型,开展旋转爆轰波传播稳定性研究.
结论:1. 分界面化学反应是引起爆轰波传播模式自发转变的原因之一; 2. 提出的无量纲参数NL可以将模式转变与爆轰波数联系起来.

关键词:旋转爆轰发动机; 基元反应; 多波传播模式; 爆轰稳定性

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Anand V, George AS, Driscoll R, et al., 2015. Characterization of instabilities in a rotating detonation combustor. International Journal of Hydrogen Energy, 40(46):16649-16659.

[2]Anand V, George AS, Driscoll R, et al., 2016. Investigation of rotating detonation combustor operation with H2-air mixtures. International Journal of Hydrogen Energy, 41(2):1281-1292.

[3]Bader G, Deuflhard P, 1983. A semi-implicit mid-point rule for stiff systems of ordinary differential equations. Numerische Mathematik, 41(3):373-398.

[4]Bykovskii FA, Vedernikov EF, 1996. Self-sustaining pulsating detonation of gas-mixture flow. Combustion, Explosion and Shock Waves, 32(4):442-448.

[5]Bykovskii FA, Zhdan SA, Vedernikov EF, 2005. Continuous spin detonation in annular combustors. Combustion, Explosion and Shock Waves, 41(4):449-459.

[6]Bykovskii FA, Zhdan SA, Vedernikov EF, 2006. Continuous spin detonations. Journal of Propulsion and Power, 22(6):1204-1216.

[7]Bykovskii FA, Zhdan SA, Vedernikov EF, et al., 2017. Scaling factor in continuous spin detonation of syngas–air mixtures. Combustion, Explosion, and Shock Waves, 53(2):187-198.

[8]Daniau E, Falempin F, Zhdan S, 2005. Pulsed and rotating detonation propulsion systems : first step toward operational engines. AIAA/CIRA 13th International Space Planes and Hypersonics Systems and Technologies Conference, Article 3233.

[9]Deng L, Ma H, Xu C, et al., 2018. The feasibility of mode control in rotating detonation engine. Applied Thermal Engineering, 129:1538-1550.

[10]Falempin F, Naour BL, 2009. R&T effort on pulsed and continuous detonation wave engines. 16th AIAA/DLR/DGLR International Space Planes and Hypersonic Systems and Technologies Conference, Article 7284.

[11]Frolov SM, Aksenov VS, Ivanov VS, et al., 2015. Large-scale hydrogen-air continuous detonation combustor. International Journal of Hydrogen Energy, 40(3):1616-1623.

[12]Fujii J, Kumazawa Y, Matsuo A, et al., 2017. Numerical investigation on detonation velocity in rotating detonation engine chamber. Proceedings of the Combustion Institute, 36(2):2665-2672.

[13]Gamezo VN, Desbordes D, Oran ES, 1999. Formation and evolution of two-dimensional cellular detonations. Combustion and Flame, 116(1-2):154-165.

[14]George AS, Driscoll R, Anand V, et al., 2017. On the existence and multiplicity of rotating detonations. Proceedings of the Combustion Institute, 36(2):2691-2698.

[15]Ginsberg T, Ciccarelli G, Boccio J, 1994. Initial hydrogen detonation data from the high-temperature combustion facility. Water Reactor Safety Information Meeting, Article BNL-NUREG-61445.

[16]Hippler H, Neunaber H, Troe J, 1995. Shock wave studies of the reactions HO+H2O2→H2O+HO2 and HO+HO2→H2O+O2 between 930 and 1680 K. The Journal of Chemical Physics, 103(9):3510-3516.

[17]Kurganov A, Noelle S, Petrova G, 2001. Semidiscrete central-upwind schemes for hyperbolic conservation laws and Hamilton–Jacobi equations. SIAM Journal on Scientific Computing, 23(3):707-740.

[18]Li BX, Wu YW, Weng CS, et al., 2018. Influence of equivalence ratio on the propagation characteristics of rotating detonation wave. Experimental Thermal and Fluid Science, 93:366-378.

[19]Lin W, Zhou J, Liu SJ, et al., 2015. Experimental study on propagation mode of H2/air continuously rotating detonation wave. International Journal of Hydrogen Energy, 40(4):1980-1993.

[20]Marinov NM, 1995. Transport Phenomena in Combustion. Taylor & Francis Group, USA.

[21]Naples A, Hoke J, Karnesky J, et al., 2013. Flowfield characterization of a rotating detonation engine. 51st AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Article 278.

[22]Nordeen CA, Schwer D, Schauer F, et al., 2016. Role of inlet reactant mixedness on the thermodynamic performance of a rotating detonation engine. Shock Waves, 26(4):417-428.

[23]Oran ES, Gamezo VN, 2007. Origins of the deflagration-todetonation transition in gas-phase combustion. Combustion and Flame, 148(1-2):4-47.

[24]Oran ES, Weber Jr JW, Stefaniw EI, et al., 1998. A numerical study of a two-dimensional H2-O2-Ar detonation using a detailed chemical reaction model. Combustion and Flame, 113(1-2):147-163.

[25]Peng L, Wang D, Wu XS, et al., 2015. Ignition experiment with automotive spark on rotating detonation engine. International Journal of Hydrogen Energy, 40(26):8465- 8474.

[26]Schwer D, Kailasanath K, 2011. Numerical investigation of the physics of rotating-detonation-engines. Proceedings of the Combustion Institute, 33(2):2195-2202.

[27]Schwinn K, Gejji R, Kan B, et al., 2018. Self-sustained, high-frequency detonation wave generation in a semibounded channel. Combustion and Flame, 193:384-396.

[28]Sod GA, 1978. A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws. Journal of Computational Physics, 27(1):1-31.

[29]Voitsekhovskii BV, 1959. Stationary spin detonation. Soviet Journal of Applied Mechanics and Technical Physics, 129:157-164.

[30]Wang C, Liu WD, Liu SJ, et al., 2015. Experimental investigation on detonation combustion patterns of hydrogen/vitiated air within annular combustor. Experimental Thermal and Fluid Science, 66:269-278.

[31]Wolański P, 2011. Rotaing detonation wave stability. 23rd International Colloquium on the Dynamics of Explosions and Reactive Systems, p.24-29.

[32]Wu D, Zhou R, Liu M, et al., 2014. Numerical investigation of the stability of rotating detonation engines. Combustion Science and Technology, 186(10-11):1699-1715.

[33]Xie QF, Wen HC, Li WH, et al., 2018. Analysis of operating diagram for H2/air rotating detonation combustors under lean fuel condition. Energy, 151:408-419.

[34]Yao SB, Wang JP, 2016. Multiple ignitions and the stability of rotating detonation waves. Applied Thermal Engineering, 108:927-936.

[35]Yao SB, Liu M, Wang JP, 2015. Numerical investigation of spontaneous formation of multiple detonation wave fronts in rotating detonation engine. Combustion Science and Technology, 187(12):1867-1878.

[36]Yao SB, Han X, Liu Y, et al., 2017. Numerical study of rotating detonation engine with an array of injection holes. Shock Waves, 27(3):467-476.

[37]Zhang TT, Wang ZG, Huang W, et al., 2019. The overall layout of rocket-based combined-cycle engines: a review. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 20(3):163-183.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2022 Journal of Zhejiang University-SCIENCE