Full Text:   <1631>

Summary:  <445>

CLC number: 

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2022-05-23

Cited: 0

Clicked: 2304

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Wei-jie Fan

https://orcid.org/0000-0002-4766-5494

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2022 Vol.23 No.5 P.388-404

http://doi.org/10.1631/jzus.A2100448


Numerical study on ethylene-air continuous rotating detonation in annular combustors with different widths


Author(s):  Wei-jie FAN, Wei-dong LIU, Hao-yang PENG, Shi-jie LIU, Jian SUN

Affiliation(s):  Science and Technology on Scramjet Laboratory, College of Aerospace Science and Technology, National University of Defense Technology, Changsha 410073, China; more

Corresponding email(s):   wdliu@nudt.edu.cn, penghaoyang@nudt.edu.cn

Key Words:  Continuous rotating detonation (CRD), Ethylene-air, Combustor width, Propagation mode, Propulsive performance


Wei-jie FAN, Wei-dong LIU, Hao-yang PENG, Shi-jie LIU, Jian SUN. Numerical study on ethylene-air continuous rotating detonation in annular combustors with different widths[J]. Journal of Zhejiang University Science A, 2022, 23(5): 388-404.

@article{title="Numerical study on ethylene-air continuous rotating detonation in annular combustors with different widths",
author="Wei-jie FAN, Wei-dong LIU, Hao-yang PENG, Shi-jie LIU, Jian SUN",
journal="Journal of Zhejiang University Science A",
volume="23",
number="5",
pages="388-404",
year="2022",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A2100448"
}

%0 Journal Article
%T Numerical study on ethylene-air continuous rotating detonation in annular combustors with different widths
%A Wei-jie FAN
%A Wei-dong LIU
%A Hao-yang PENG
%A Shi-jie LIU
%A Jian SUN
%J Journal of Zhejiang University SCIENCE A
%V 23
%N 5
%P 388-404
%@ 1673-565X
%D 2022
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A2100448

TY - JOUR
T1 - Numerical study on ethylene-air continuous rotating detonation in annular combustors with different widths
A1 - Wei-jie FAN
A1 - Wei-dong LIU
A1 - Hao-yang PENG
A1 - Shi-jie LIU
A1 - Jian SUN
J0 - Journal of Zhejiang University Science A
VL - 23
IS - 5
SP - 388
EP - 404
%@ 1673-565X
Y1 - 2022
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A2100448


Abstract: 
To investigate the impact of combustor width on continuous rotating detonation (CRD) fueled by ethylene and air, a series of 3D simulations are conducted by changing the inner cylinder radius of an annular combustor while retaining the same outer cylinder radius. The results show that the CRD wave propagates more steadily and faster as the combustor width increases. The high-temperature zone at the backward-facing step preheats the propellants and contributes to the steady propagation of the CRD wave in 25- and 30-mm wide combustors. The highest and the lowest velocities are obtained in the 30- and 15-mm wide combustors at, respectively, 1880.27 and 1681.01 m/s. On the other hand, the average thrust decreases as the combustor width increases. The highest thrust is obtained in the 15-mm wide combustor while the lowest is in the 30-mm wide combustor, at 758.06 and 525.93 N, respectively. Nevertheless, the thrust is much more stable in the 25- and 30-mm wide combustors than in the 15- and 20-mm wide combustors.

不同宽度环形燃烧室内乙烯-空气连续旋转爆震的数值模拟

作者:樊伟杰1,刘卫东1,彭皓阳1,刘世杰1,孙健2
机构:1国防科技大学,空天科学学院,超燃冲压发动机技术国家重点实验室,中国长沙,410073;2西安卫星测控中心,宇航动力学国家重点实验室,中国西安,710043
目的:揭示燃烧室宽度对乙烯-空气爆震波传播特性的影响,分析爆震波流场特征和燃烧室宽度对发动机推进性能的影响,为实现稳定的碳氢燃料连续旋转爆震和高效的发动机推进性能提供一些燃烧室设计思路。
创新点:1.采用三维数值仿真,验证了燃烧室头部后向台阶高温回流区对新鲜可燃气的预加热作用;2.揭示了燃烧室宽度对发动机推力性能的影响。
方法:1.通过三维数值仿真,对爆震波传播过程的瞬时压力监测曲线和流场温度云图进行分析,明晰爆震波在不同宽度燃烧室内的模态转换过程;2.对流场的温度、压力和组分分布云图及燃料的沿程分布情况进行分析,获得不同宽度燃烧室内的爆震波流场特征,揭示燃烧室宽度对爆震波传播稳定性的影响;3.对推力监测曲线、轴向速度和压力的沿程分布情况进行分析,揭示燃烧室宽度对发动机推力性能的影响。
结论:1.随着环形燃烧室宽度的增大,爆震波传播过程的稳定性显著提高,爆震波的传播速度明显增大;2.在较宽的环形燃烧室头部形成的高温回流区对新鲜混合气的预加热作用有利于爆震波的稳定传播;3.随着环形燃烧室宽度的增大,发动机的推力下降但推力的稳定性提高;4.带凹腔的环形燃烧室有望获得稳定且高效的推进性能。

关键词:连续旋转爆震波;乙烯-空气;燃烧室宽度;传播模态;推进性能

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]AnandV, GeorgeAS, de LuzanCF, et al., 2018. Rotating detonation wave mechanics through ethylene-air mixtures in hollow combustors, and implications to high frequency combustion instabilities. Experimental Thermal and Fluid Science, 92:314-325.

[2]AndrusIQ, PolankaMD, KingPI, et al., 2017. Experimentation of premixed rotating detonation engine using variable slot feed plenum. Journal of Propulsion and Power, 33(6):1448-1458.

[3]BaurleRA, MathurT, GruberMR, et al., 1998. A numerical and experimental investigation of a scramjet combustor for hypersonic missile applications. Proceedings of the 34th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, p.1-17.

[4]BykovskiiFA, VedernikovEF, 1996. Self-sustaining pulsating detonation of gas-mixture flow. Combustion, Explosion and Shock Waves, 32(4):442-448.

[5]BykovskiiFA, ZhdanSA, VedernikovEF, 2006a. Continuous spin detonation of fuel-air mixtures. Combustion, Explosion and Shock Waves, 42(4):463-471.

[6]BykovskiiFA, ZhdanSA, VedernikovEF, 2006b. Continuous spin detonations. Journal of Propulsion and Power, 22(6):1204-1216.

[7]BykovskiiFA, VedernikovEF, PolozovSV, et al., 2007. Initiation of detonation in flows of fuel-air mixtures. Combustion, Explosion, and Shock Waves, 43(3):345-354.

[8]ChoKY, CodoniJR, RankinBA, et al., 2016. High-repetition-rate chemiluminescence imaging of a rotating detonation engine. Proceedings of the 54th AIAA Aerospace Sciences Meeting, p.1-13.

[9]FanWJ, ZhouJ, LiuSJ, et al., 2021. Effects of the geometrical parameters of the injection nozzle on ethylene-air continuous rotating detonation. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 22(7):547-563.

[10]FangYS, HuZM, TengHH, et al., 2017. Numerical study of inflow equivalence ratio inhomogeneity on oblique detonation formation in hydrogen‍–‍air mixtures. Aerospace Science and Technology, 71:256-263.

[11]FujiiJ, KumazawaY, MatsuoA, et al., 2017. Numerical investigation on detonation velocity in rotating detonation engine chamber. Proceedings of the Combustion Institute, 36(2):2665-2672.

[12]GeorgeAS, DriscollRB, AnandV, et al., 2015. Fuel blending as a means to achieve initiation in a rotating detonation engine. Proceedings of the 53rd AIAA Aerospace Sciences Meeting, p.1-18.

[13]GottiparthiKC, GéninF, SrinivasanS, et al., 2009. Simulation of cellular detonation structures in ethylene-oxygen mixtures. Proceedings of the 47th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, p.1-13.

[14]HsuPS, SlipchenkoMN, JiangNB, et al., 2020. Megahertz-rate OH planar laser-induced fluorescence imaging in a rotating detonation combustor. Optics Letters, 45(20):5776-5779.

[15]KawasakiA, InakawaT, KasaharaJ, et al., 2019. Critical condition of inner cylinder radius for sustaining rotating detonation waves in rotating detonation engine thruster. Proceedings of the Combustion Institute, 37(3):3461-3469.

[16]KhokhlovAM, AustinJM, PintgenF, et al., 2004. Numerical study of the detonation wave structure in ethylene-oxygen mixtures. Proceedings of the 42nd AIAA Aerospace Sciences Meeting and Exhibit, p.2-7.

[17]KindrackiJ, 2015. Experimental research on rotating detonation in liquid fuel–gaseous air mixtures. Aerospace Science and Technology, 43:445-453.

[18]Le NaourB, FalempinF, CoulonK, 2017. MBDA R&T effort regarding continuous detonation wave engine for propulsion–status in 2016. Proceedings of the 21st AIAA International Space Planes and Hypersonics Technologies Conference, p.1-8.

[19]LinW, ZhouJ, LiuSJ, et al., 2015. Experimental study on propagation mode of H2/air continuously rotating detonation wave. International Journal of Hydrogen Energy, 40(4):1980-1993.

[20]LiuSJ, LinZY, LiuWD, et al., 2013. Experimental and three-dimensional numerical investigations on H2/air continuous rotating detonation wave. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 227(2):326-341.

[21]LiuSJ, LiuWD, LinZY, et al., 2015. Experimental research on the propagation characteristics of continuous rotating detonation wave near the operating boundary. Combustion Science and Technology, 187(11):1790-1804.

[22]LiuSJ, PengHY, LiuWD, et al., 2020. Effects of cavity depth on the ethylene-air continuous rotating detonation. Acta Astronautica, 166:1-10.

[23]NikitinVF, DushinVR, PhylippovYG, et al., 2009. Pulse detonation engines: technical approaches. Acta Astronautica, 64(2-3):281-287.

[24]PengHY, LiuWD, LiuSJ, et al., 2018. Experimental investigations on ethylene-air continuous rotating detonation wave in the hollow chamber with Laval nozzle. Acta Astronautica, 151:137-145.

[25]PengHY, LiuWD, LiuSJ, et al., 2019a. The effect of cavity on ethylene-air continuous rotating detonation in the annular combustor. International Journal of Hydrogen Energy, 44(26):14032-14043.

[26]PengHY, LiuWD, LiuSJ, 2019b. Ethylene continuous rotating detonation in optically accessible racetrack-like combustor. Combustion Science and Technology, 191(4):676-695.

[27]PengHY, LiuWD, LiuSJ, et al., 2021. Effects of cavity location on ethylene–air continuous rotating detonation in a cavity-based annular combustor. Combustion Science and Technology, 193(16):2761-2782.

[28]SchwerD, KailasanathK, 2013. Fluid dynamics of rotating detonation engines with hydrogen and hydrocarbon fuels. Proceedings of the Combustion Institute, 34(2):1991-1998.

[29]SchwerDA, KailasanathK, 2012. Feedback into mixture plenums in rotating detonation engines. Proceedings of the 50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, p.1-17.

[30]StewartDS, KasimovAR, 2006. State of detonation stability theory and its application to propulsion. Journal of Propulsion and Power, 22(6):1230-1244.

[31]SunJ, ZhouJ, LiuSJ, et al., 2017. Effects of injection nozzle exit width on rotating detonation engine. Acta Astronautica, 140:388-401.

[32]SunJ, ZhouJ, LiuSJ, et al., 2018a. Numerical investigation of a rotating detonation engine under premixed/non-premixed conditions. Acta Astronautica, 152:‍630-638.

[33]SunJ, ZhouJ, LiuSJ, et al., 2018b. Plume flowfield and propulsive performance analysis of a rotating detonation engine. Aerospace Science and Technology, 81:383-393.

[34]SunJ, ZhouJ, LiuSJ, et al., 2019. Interaction between rotating detonation wave propagation and reactant mixing. Acta Astronautica, 164:197-203.

[35]TangXM, WangJP, ShaoYT, 2015. Three-dimensional numerical investigations of the rotating detonation engine with a hollow combustor. Combustion and Flame, 162(4):997-1008.

[36]WangYH, LeJL, WangC, et al., 2018. A non-premixed rotating detonation engine using ethylene and air. Applied Thermal Engineering, 137:749-757.

[37]WilhiteJ, DriscollR, GeorgeAS, et al., 2016. Investigation of a rotating detonation engine using ethylene-air mixtures. Proceedings of the 54th AIAA Aerospace Sciences Meeting, p.1-7.

[38]YangCL, WuXS, MaH, et al., 2016. Experimental research on initiation characteristics of a rotating detonation engine. Experimental Thermal and Fluid Science, 71:154-163.

[39]YaoSB, TangXM, WangJP, 2017. Numerical study of the propulsive performance of the hollow rotating detonation engine with a Laval nozzle. International Journal of Turbo & Jet-Engines, 34(1):49-54.

[40]YiTH, LouJ, TuranganC, et al., 2011. Propulsive performance of a continuously rotating detonation engine. Journal of Propulsion and Power, 27(1):171-181.

[41]YungsterS, RadhakrishnanK, 2005. Structure and stability of one-dimensional detonations in ethylene-air mixtures. Shock Waves, 14(1):61-72.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE