Full Text:   <1904>

Summary:  <1690>

CLC number: O631.2

On-line Access: 2020-03-17

Received: 2019-11-24

Revision Accepted: 2020-02-23

Crosschecked: 2020-03-01

Cited: 0

Clicked: 2922

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Lin-li He

https://orcid.org/0000-0001-9297-4379

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2020 Vol.21 No.3 P.229-239

http://doi.org/10.1631/jzus.A1900530


Effects of chain stiffness and shear flow on nanoparticle dispersion and distribution in ring polymer melts


Author(s):  Dan Wang, Feng-qing Li, Xiang-hong Wang, Shi-ben Li, Lin-li He

Affiliation(s):  Department of Physics, Wenzhou University, Wenzhou 320035, China

Corresponding email(s):   linlihe@wzu.edu.cn

Key Words:  Ring polymer, Nanocomposites, Chain stiffness, Shear flow, Molecular dynamics (MD)


Dan Wang, Feng-qing Li, Xiang-hong Wang, Shi-ben Li, Lin-li He. Effects of chain stiffness and shear flow on nanoparticle dispersion and distribution in ring polymer melts[J]. Journal of Zhejiang University Science A, 2020, 21(3): 229-239.

@article{title="Effects of chain stiffness and shear flow on nanoparticle dispersion and distribution in ring polymer melts",
author="Dan Wang, Feng-qing Li, Xiang-hong Wang, Shi-ben Li, Lin-li He",
journal="Journal of Zhejiang University Science A",
volume="21",
number="3",
pages="229-239",
year="2020",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1900530"
}

%0 Journal Article
%T Effects of chain stiffness and shear flow on nanoparticle dispersion and distribution in ring polymer melts
%A Dan Wang
%A Feng-qing Li
%A Xiang-hong Wang
%A Shi-ben Li
%A Lin-li He
%J Journal of Zhejiang University SCIENCE A
%V 21
%N 3
%P 229-239
%@ 1673-565X
%D 2020
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1900530

TY - JOUR
T1 - Effects of chain stiffness and shear flow on nanoparticle dispersion and distribution in ring polymer melts
A1 - Dan Wang
A1 - Feng-qing Li
A1 - Xiang-hong Wang
A1 - Shi-ben Li
A1 - Lin-li He
J0 - Journal of Zhejiang University Science A
VL - 21
IS - 3
SP - 229
EP - 239
%@ 1673-565X
Y1 - 2020
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1900530


Abstract: 
The dispersion behavior and spatial distribution of nanoparticles (NPs) in ring polymer melts are explored by using molecular dynamics (MD) simulations. As polymer-NP interactions increase, three general categories of polymer-mediated NP organization are observed, namely, contact aggregation, bridging, and steric dispersion, consistent with the results of equivalent linear ones in previous studies. In the case of direct contact aggregation among NPs, the explicit aggregation-dispersion transition of NPs in ring polymer melts can be induced by increasing the chain stiffness or applying a steady shear flow. Results further indicate that NPs can achieve an optimal dispersed state with the appropriate chain stiffness and shear flow. Moreover, shear flow cannot only improve the dispersion of NPs in ring polymer melts but also control the spatial distribution of NPs into a well-ordered structure. This improvement becomes more evident under stronger polymer-NP interactions. The observed induced-dispersion or ordered distribution of NPs may provide efficient access to the design and manufacture of high-performance polymer nanocomposites (PNCs).

The manuscript reports the molecular dynamics simulations of the dispersion behavior and spatial distribution of NPs in ring polymer melts. The results show NPs can achieve an optimal dispersed state with appropriate chain stiffness and shear flow. Shear flow can not only improve the dispersion of NPs in ring polymer melts but also control the spatial distribution of NPS into a well-ordered structrure. This work and is well done and significant to the design and manufacture of high-performance polymer nanocomposites.

链刚性和剪切场对环形聚合物熔体中纳米颗粒分散和空间分布的影响

目的:一般情况下,纳米粒子在环形聚合物熔体中处于聚集状态. 本文通过增加链刚性或施加稳定的剪切场来诱导纳米粒子在环形聚合物熔体中的聚集-分散转变,使环形聚合物中的纳米粒子达到最优的分散状态.
创新点:同时改变链刚性和剪切场强度,诱导纳米粒子在分散的同时进行有序排列.
方法:利用分子动力学模拟方法,研究纳米粒子在环形聚合物熔体中的分散和空间分布.
结论:1. 在较弱的高分子/纳米粒子(polymer-NP)相互作用力下,增加环链的刚性或施加剪切场,可以诱导纳米粒子(NPs)从聚集态向分散态过渡. 2. 增加链的刚性可以提高NPs在环形聚合物熔体中的分散度; NPs被半刚性(或棒状)环形聚合物链包裹,有效地避免了NPs间的聚集,促使其分散. 3. 随着剪切场强度的增加,聚集的NPs也会因polymer-NP相互作用、NP-NP相互作用以及剪切场之间的竞争而趋于分散; 由于polymer-NP相互作用强,所以NPs的空间分布具有良好的有序性和分散性. 4. 同时考虑剪切场和链刚性,可有效提高NPs在环形聚合物熔体中的分散度和空间分布,而链刚性的增加干扰了NPs的有序结构.

关键词:环形聚合物; 纳米复合材料; 链刚性; 剪切场; 分子动力学

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Benkova Z, Namer P, Cifra P, 2016. Comparison of a stripe and slab confinement for ring and linear macromolecules in nanochannel. Soft Matter, 12(40):8425-8439.

[2]Bennemann C, Paul W, Baschnagel J, et al., 1999. Investigating the influence of different thermodynamic paths on the structural relaxation in a glass-forming polymer melt. Journal of Physics: Condensed Matter, 11(10):2179-2192.

[3]Bokobza L, 2007. Multiwall carbon nanotube elastomeric composites: a review. Polymer, 48(17):4907-4920.

[4]Burgos-Mármol JJ, Álvarez-Machancoses Ó, Patti A, 2017. Modeling the effect of polymer chain stiffness on the behavior of polymer nanocomposites. The Journal of Physical Chemistry B, 121(25):6245-6256.

[5]Calderon CP, Ashurst WT, 2002. Comment on “reversing the perturbation in nonequilibrium molecular dynamics: an easy way to calculate the shear viscosity of fluids”. Physical Review E, 66(1):013201.

[6]Caseri W, 2000. Nanocomposites of polymers and metals or semiconductors: historical background and optical properties. Macromolecular Rapid Communications, 21(11):705-722.

[7]Chen RJ, Poling-Skutvik R, Howard MP, et al., 2019. Influence of polymer flexibility on nanoparticle dynamics in semidilute solutions. Soft Matter, 15(6):1260-1268.

[8]Chen WD, Li YQ, Zhao HC, et al., 2015. Conformations and dynamics of single flexible ring polymers in simple shear flow. Polymer, 64:93-99.

[9]Chen XY, Carbone P, Cavalcanti WL, et al., 2007. Viscosity and structural alteration of a coarse-grained model of polystyrene under steady shear flow studied by reverse nonequilibrium molecular dynamics. Macromolecules, 40(22):8087-8095.

[10]Chen YL, Li ZW, Wen SP, et al., 2014. Molecular simulation study of role of polymer-particle interactions in the strain-dependent viscoelasticity of elastomers (Payne effect). The Journal of Chemical Physics, 141(10):104901.

[11]Chen YL, Liu J, Li L, et al., 2017. Tailoring the alignment of string-like nanoparticle assemblies in a functionalized polymer matrix via steady shear. RSC Advances, 7(15):8898-8907.

[12]Delcambre SP, Riggleman RA, de Pablo JJ, et al., 2010. Mechanical properties of antiplasticized polymer nanostructures. Soft Matter, 6(11):2475-2483.

[13]Deng ZY, Jiang YW, He LL, et al., 2016. Aggregation-dispersion transition for nanoparticles in semiflexible ring polymer nanocomposite melts. The Journal of Physical Chemistry B, 120(44):11574-11581.

[14]Feng YC, Zou H, Tian M, et al., 2012. Relationship between dispersion and conductivity of polymer nanocomposites: a molecular dynamics study. The Journal of Physical Chemistry B, 116(43):13081-13088.

[15]Ganesan V, Ellison CJ, Pryamitsyn V, 2010. Mean-field models of structure and dispersion of polymer-nanoparticle mixtures. Soft Matter, 6(17):4010-4025.

[16]Goswami M, Sumpter BG, 2009. Effect of polymer-filler interaction strengths on the thermodynamic and dynamic properties of polymer nanocomposites. The Journal of Chemical Physics, 130(13):134910.

[17]Gu HB, Xu XJ, Dong MY, et al., 2019. Carbon nanospheres induced high negative permittivity in nanosilver-polydopamine metacomposites. Carbon, 147:550-558.

[18]He YX, Chen QY, Liu H, et al., 2019. Friction and wear of MoO3/Graphene oxide modified glass fiber reinforced epoxy nanocomposites. Macromolecular Materials and Engineering, 304(8):1900166.

[19]Hooper JB, Schweizer KS, 2005. Contact aggregation, bridging, and steric stabilization in dense polymer-particle mixtures. Macromolecules, 38(21):8858-8869.

[20]Hooper JB, Schweizer KS, 2006. Theory of phase separation in polymer nanocomposites. Macromolecules, 39(15):5133-5142.

[21]Hossain MD, Reid JC, Lu DR, et al., 2018. Influence of constraints within a cyclic polymer on solution properties. Biomacromolecules, 19(2):616-625.

[22]Huber G, Vilgis TA, Heinrich G, 1996. Universal properties in the dynamical deformation of filled rubbers. Journal of Physics: Condensed Matter, 8(29):L409.

[23]Isaac R, Gobalakrishnan S, Rajan G, et al., 2013. An overview of facile green biogenic synthetic routes and applications of platinum nanoparticles. Advanced Science, 5(8):763-770.

[24]Jaber E, Luo HB, Li WT, et al., 2011. Network formation in polymer nanocomposites under shear. Soft Matter, 7(8):3852-3860.

[25]Jain SC, Goossens JGP, Peters GWM, et al., 2008. Strong decrease in viscosity of nanoparticle-filled polymer melts through selective adsorption. Soft Matter, 4(9):1848-1854.

[26]Jiang DW, Wang Y, Li BJ, et al., 2019. Flexible sandwich structural strain sensor based on silver nanowires decorated with self-healing substrate. Macromolecular Materials and Engineering, 304(7):1900074.

[27]Kalra V, Escobedo F, Joo YL, 2010. Effect of shear on nanoparticle dispersion in polymer melts: a coarse-grained molecular dynamics study. The Journal of Chemical Physics, 132(2):024901.

[28]Kremer K, Grest GS, 1990. Dynamics of entangled linear polymer melts: a molecular-dynamics simulation. The Journal of Chemical Physics, 92(8):5057-5086.

[29]Kruteva M, Allgaier J, Richter D, 2017. Direct observation of two distinct diffusive modes for polymer rings in linear polymer matrices by Pulsed Field Gradient (PFG) NMR. Macromolecules, 50(23):9482-9493.

[30]Liu J, Cao DP, Zhang LQ, 2008. Molecular dynamics study on nanoparticle diffusion in polymer melts: a test of the Stokes-Einstein law. The Journal of Physical Chemistry C, 112(17):6653-6661.

[31]Liu J, Gao YY, Cao DP, et al., 2011a. Nanoparticle dispersion and aggregation in polymer nanocomposites: insights from molecular dynamics simulation. Langmuir, 27(12):7926-7933.

[32]Liu J, Wu Y, Shen JX, et al., 2011b. Polymer-nanoparticle interfacial behavior revisited: a molecular dynamics study. Physical Chemistry Chemical Physics, 13(28):13058-13069.

[33]Ma LC, Zhu YY, Feng PF, et al., 2019. Reinforcing carbon fiber epoxy composites with triazine derivatives functionalized graphene oxide modified sizing agent. Composites Part B: Engineering, 176:107078.

[34]Ma Y, Hou CP, Zhang HP, et al., 2019. Three-dimensional core-shell Fe3O4/Polyaniline coaxial heterogeneous nanonets: preparation and high performance supercapacitor electrodes. Electrochimica Acta, 315:114-123.

[35]Mackay ME, Tuteja A, Duxbury PM, et al., 2006. General strategies for nanoparticle dispersion. Science, 311(5768):1740-1743.

[36]Müller-Plathe F, Bordat P, 2004. Reverse non-equilibrium molecular dynamics. In: Karttunen M, Lukkarinen A, Vattulainen I (Eds.), Novel Methods in Soft Matter Simulations. Springer, Berlin, Germany, p.310-326.

[37]Narumi A, Kobayashi T, Yamada M, et al., 2018. Ring-expansion/contraction radical crossover reactions of cyclic alkoxyamines: a mechanism for ring expansion-controlled radical polymerization. Polymers, 10(6):638.

[38]Patra TK, Singh JK, 2013. Coarse-grain molecular dynamics simulations of nanoparticle-polymer melt: dispersion vs. agglomeration. The Journal of Chemical Physics, 138(14):144901.

[39]Plimpton S, 1995. Fast parallel algorithms for short-range molecular dynamics. Journal of Computational Physics, 117(1):1-19.

[40]Pryamitsyn V, Ganesan V, 2006. Mechanisms of steady-shear rheology in polymer-nanoparticle composites. Journal of Rheology, 50(5):655-683.

[41]Roca AG, Veintemillas-Verdaguer S, Port M, et al., 2009. Effect of nanoparticle and aggregate size on the relaxometric properties of MR contrast agents based on high quality magnetite nanoparticles. The Journal of Physical Chemistry B, 113(19):7033-7039.

[42]Shan Y, Wang XH, Ji YY, et al., 2018. Self-assembly of phospholipid molecules in solutions under shear flows: microstructures and phase diagrams. The Journal of Chemical Physics, 149(24):244901.

[43]Shen JX, Liu J, Gao YY, et al., 2011. Revisiting the dispersion mechanism of grafted nanoparticles in polymer matrix: a detailed molecular dynamics simulation. Langmuir, 27(24):15213-15222.

[44]Smith JS, Bedrov D, Smith GD, 2003. A molecular dynamics simulation study of nanoparticle interactions in a model polymer-nanoparticle composite. Composites Science and Technology, 63(11):1599-1605.

[45]Song QL, Ji YY, Li SB, et al., 2018. Adsorption behavior of polymer chain with different topology structure at the polymer-nanoparticle interface. Polymers, 10(6):590.

[46]Usuki A, Kojima Y, Kawasumi M, et al., 1993. Synthesis of nylon 6-clay hybrid. Journal of Materials Research, 8(5):1179-1184.

[47]Vaia RA, Maguire JF, 2007. Polymer nanocomposites with prescribed morphology: going beyond nanoparticle-filled polymers. Chemistry of Materials, 19(11):2736-2751.

[48]Wei ZY, Hou YQ, Ning NY, et al., 2015. Theoretical insight into dispersion of silica nanoparticles in polymer melts. The Journal of Physical Chemistry B, 119(30):9940-9948.

[49]Yan LT, Popp N, Ghosh SK, et al., 2010. Self-assembly of Janus nanoparticles in diblock copolymers. ACS Nano, 4(2):913-920.

[50]Zhang JX, Zhang WR, Wei LP, et al., 2019. Alternating multilayer structural epoxy composite coating for corrosion protection of steel. Macromolecular Materials and Engineering, 304(12):1900374.

[51]Zhang YD, An YF, Wu LY, et al., 2019. Metal-free energy storage systems: combining batteries with capacitors based on a methylene blue functionalized graphene cathode. Journal of Materials Chemistry A, 7(34):19668-19675.

[52]Zhao JB, Wu LL, Zhan CX, et al., 2017. Overview of polymer nanocomposites: computer simulation understanding of physical properties. Polymer, 133:272-287.

[53]Zheng YW, Chen L, Wang XY, et al., 2019. Modification of renewable cardanol onto carbon fiber for the improved interfacial properties of advanced polymer composites. Polymers, 12(1):45.

[54]Zhu GY, Cui XK, Zhang Y, et al., 2019. Poly (vinyl butyral)/ graphene oxide/poly (methylhydrosiloxane) nanocomposite coating for improved aluminum alloy anticorrosion. Polymer, 172:415-422.

[55]Zhu J, Uhl FM, Morgan AB, et al., 2001. Studies on the mechanism by which the formation of nanocomposites enhances thermal stability. Chemistry of Materials, 13(12):4649-4654.

[56]Zuev VV, Ivanova YG, 2012. Mechanical and electrical properties of polyamide-6-based nanocomposites reinforced by fulleroid fillers. Polymer Engineering & Science, 52(6):1206-1211.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE