Full Text:   <2669>

Summary:  <1650>

CLC number: TH71

On-line Access: 2021-06-16

Received: 2020-06-24

Revision Accepted: 2021-03-03

Crosschecked: 2021-09-06

Cited: 0

Clicked: 4201

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Wei-ting Liu

https://orcid.org/0000-0003-0035-2500

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2021 Vol.22 No.9 P.695-706

http://doi.org/10.1631/jzus.A2000284


A method to avoid the cycle-skip phenomenon in time-of-flight determination for ultrasonic flow measurement


Author(s):  Cheng-wei Liu, Ze-hua Fang, Liang Hu, Yong-qiang Liu, Rui Su, Wei-ting Liu

Affiliation(s):  State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China

Corresponding email(s):   liuwt@zju.edu.cn

Key Words:  Ultrasonic flow measurement, Time-of-flight (TOF), Correlation coefficient, Signal power, Double-threshold method


Cheng-wei Liu, Ze-hua Fang, Liang Hu, Yong-qiang Liu, Rui Su, Wei-ting Liu. A method to avoid the cycle-skip phenomenon in time-of-flight determination for ultrasonic flow measurement[J]. Journal of Zhejiang University Science A, 2021, 22(9): 695-706.

@article{title="A method to avoid the cycle-skip phenomenon in time-of-flight determination for ultrasonic flow measurement",
author="Cheng-wei Liu, Ze-hua Fang, Liang Hu, Yong-qiang Liu, Rui Su, Wei-ting Liu",
journal="Journal of Zhejiang University Science A",
volume="22",
number="9",
pages="695-706",
year="2021",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A2000284"
}

%0 Journal Article
%T A method to avoid the cycle-skip phenomenon in time-of-flight determination for ultrasonic flow measurement
%A Cheng-wei Liu
%A Ze-hua Fang
%A Liang Hu
%A Yong-qiang Liu
%A Rui Su
%A Wei-ting Liu
%J Journal of Zhejiang University SCIENCE A
%V 22
%N 9
%P 695-706
%@ 1673-565X
%D 2021
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A2000284

TY - JOUR
T1 - A method to avoid the cycle-skip phenomenon in time-of-flight determination for ultrasonic flow measurement
A1 - Cheng-wei Liu
A1 - Ze-hua Fang
A1 - Liang Hu
A1 - Yong-qiang Liu
A1 - Rui Su
A1 - Wei-ting Liu
J0 - Journal of Zhejiang University Science A
VL - 22
IS - 9
SP - 695
EP - 706
%@ 1673-565X
Y1 - 2021
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A2000284


Abstract: 
The double-threshold method has been widely used in ultrasonic flow measurement to determine time-of-flight (TOF) due to its low cost and ease of implementation. Performance of this method is negatively affected by the cycle-skip phenomenon which occurs frequently under inconstant working conditions, especially varied fluid temperature. This paper proposes a method to suppress the phenomenon to facilitate reliable determination of TOF in ultrasonic flow measurement. First, the double-threshold method is used to generate a feature point to segment the signal. Second, based on the correlation coefficient and signal power, judgement factors of individual signal periods are calculated to determine signal onset. Finally, a valid zero crossing which has a constant lag from the onset is selected to determine the TOF. Thus, the cycle-skip phenomenon is suppressed. Two additional modifications are proposed to eliminate the influence of varied signal frequency and low sampling rate. The proposed method was validated by an experiment based on an ultrasonic water flow sensor. Results showed that the frequently appearing cycle-skip phenomenon can be successfully suppressed by the proposed method.

一种在超声波流量测量中避免渡跃时间跳波的方法

目的:超声波渡跃时间(TOF)的准确检测是超声波流量测量中最重要的一步.测量环境(如流体介质、温度等因素)的变化,会导致超声波波形发生变化,进而引起TOF检测的跳波问题,带来流量测量误差.本文旨在提出一种TOF检测算法,避免跳波问题的出现.
创新点:1. 根据超声波信号的波形特征,提出了基于单一超声波信号的起振点判定方法,进而抑制跳波问题的发生;2. 针对实际应用中常见的频变和采样率低的问题,提出了优化方法,使所提方法更具实用性.
方法:1. 依据超声波信号的周期性和幅值特征,提出单周期信号间相关系数和平均功率相结合的判定因子,据此对超声波信号进行判定并寻找起振点,再根据起振点来确定TOF,从而抑制跳波问题;2. 应用基于过零点的信号分割方法和基于FFT的信号插值方法,解决信号频率变化和采样率低带来的实用性问题;3. 根据超声波信号波形易受温度影响的特性,利用流量标定台设计并进行相应实验,使用自制的超声波流量传感器采集大量波形剧烈变化的信号用于计算TOF,并与传统方法进行对比,验证所提方法在抑制跳波问题方面的有效性;4. 使用标定台在不同温度下对超声波流量计进行标定,使用不同的TOF确定方法,展示跳波问题对流量计精度的影响,并对此进行理论分析.
结论:1. 介质温度等因素会影响超声波信号的波形,进而引起TOF检测的跳波问题.2. 超声波信号在周期性和单周期的平均功率上都与噪声信号有所差异;所提方法从这两方面出发,可准确找到信号起振点,进而抑制跳波问题.

关键词:超声波流量测量;渡跃时间;相关系数;信号功率;双阈值法

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Barshan B, 2000. Fast processing techniques for accurate ultrasonic range measurements. Measurement Science and Technology, 11(1):45-50.

[2]Beck MS, 1981. Correlation in instruments: cross correlation flowmeters. Journal of Physics E: Scientific Instruments, 14(1):7-19.

[3]Bravo EC, Bastos TF, Martin JM, et al., 1994. Ultrasonics —temperature shapes the envelope. Sensor Review, 14(4):19-23.

[4]Carullo A, Parvis M, 2001. An ultrasonic sensor for distance measurement in automotive applications. IEEE Sensors Journal, 1(2):143.

[5]Demirli R, Saniie J, 2001. Model-based estimation of ultrasonic echoes. Part I: analysis and algorithms. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 48(3):787-802.

[6]Espinosa L, Bacca J, Prieto F, et al., 2018. Accuracy on the time-of-flight estimation for ultrasonic waves applied to non-destructive evaluation of standing trees: a comparative experimental study. Acta Acustica United with Acustica, 104(3):429-439.

[7]Fang ZH, Hu L, Mao K, et al., 2018. Similarity judgment-based double-threshold method for time-of-flight determination in an ultrasonic gas flowmeter. IEEE Transactions on Instrumentation and Measurement, 67(1):24-32.

[8]Frederiksen TM, Howard WM, 1974. A single-chip monolithic sonar system. IEEE Journal of Solid-State Circuits, 9(6):394-403.

[9]Hoseini MR, Wang XD, Zuo MJ, 2012. Estimating ultrasonic time of flight using envelope and quasi maximum likelihood method for damage detection and assessment. Measurement, 45(8):2072-2080.

[10]Hou HR, Zheng DD, Nie LX, 2015. Gas ultrasonic flow rate measurement through genetic-ant colony optimization based on the ultrasonic pulse received signal model. Measurement Science and Technology, 26(4):045005.

[11]Jiang YD, Wang BL, Huang ZY, et al., 2017. A model-based transit-time ultrasonic gas flowrate measurement method. IEEE Transactions on Instrumentation and Measurement, 66(5):879-887.

[12]Li WH, Chen Q, Wu JT, 2014. Double threshold ultrasonic distance measurement technique and its application. Review of Scientific Instruments, 85(4):044905.

[13]Lu ZK, Yang C, Qin DH, et al., 2016. Estimating ultrasonic time-of-flight through echo signal envelope and modified Gauss Newton method. Measurement, 94:355-363.

[14]Lynnworth LC, Liu Y, 2006. Ultrasonic flowmeters: half-century progress report, 1955-2005. Ultrasonics, 44(Sl):e1371-e1378.

[15]Lyons RG, 2004. Understanding Digital Signal Processing, 2nd Edition. Prentice Hall PTR, Upper Saddle River, USA, p.678-681.

[16]Rajita G, Mandal N, 2016. Review on transit time ultrasonic flowmeter. The 2nd International Conference on Control, Instrumentation, Energy & Communication (CIEC), p.88-92.

[17]Roosnek N, 2000. Novel digital signal processing techniques for ultrasonic gas flow measurements. Flow Measurement and Instrumentation, 11(2):89-99.

[18]Sabatini AM, 1997. Correlation receivers using Laguerre filter banks for modelling narrowband ultrasonic echoes and estimating their time-of-flights. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 44(6):1253-1263.

[19]Sunol F, Ochoa DA, Garcia JE, 2019. High-precision time-of-flight determination algorithm for ultrasonic flow measurement. IEEE Transactions on Instrumentation and Measurement, 68(8):2724-2732.

[20]Tezuka K, Mori M, Suzuki T, et al., 2008. Ultrasonic pulse-Doppler flow meter application for hydraulic power plants. Flow Measurement and Instrumentation, 19(3-4):155-162.

[21]Wu J, Zhu JG, Yang LH, et al., 2014. A highly accurate ultrasonic ranging method based on onset extraction and phase shift detection. Measurement, 47:433-441.

[22]Zheng DD, Hou HR, Zhang T, 2016. Research and realization of ultrasonic gas flow rate measurement based on ultrasonic exponential model. Ultrasonics, 67:112-119.

[23]Zhu WJ, Xu KJ, Fang M, et al., 2017. Variable ratio threshold and zero-crossing detection based signal processing method for ultrasonic gas flow meter. Measurement, 103: 343-352.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE