Full Text:   <668>

Summary:  <360>

CLC number: 

On-line Access: 2022-01-26

Received: 2021-03-26

Revision Accepted: 2021-09-17

Crosschecked: 0000-00-00

Cited: 0

Clicked: 465

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Kai Chen

https://orcid.org/0000-0002-2586-7546

Cheng-zhi ZENG

https://orcid.org/0000-0001-7381-891X

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2022 Vol.23 No.1 P.55-67

http://doi.org/10.1631/jzus.A2100133


Normal gravity model for inertial navigation of a hypersonic boost-glide vehicle


Author(s):  Kai CHEN, Cheng-zhi ZENG, Sen-sen PEI, Wen-chao LIANG

Affiliation(s):  School of Astronautics, Northwestern Polytechnical University, Xi’an 710072, China

Corresponding email(s):   chenkai@nwpu.edu.cn

Key Words:  Hypersonic boost-glide vehicle, Inertial navigation system (INS), Normal gravity, Gravity disturbance


Kai CHEN, Cheng-zhi ZENG, Sen-sen PEI, Wen-chao LIANG. Normal gravity model for inertial navigation of a hypersonic boost-glide vehicle[J]. Journal of Zhejiang University Science A, 2022, 23(1): 55-67.

@article{title="Normal gravity model for inertial navigation of a hypersonic boost-glide vehicle",
author="Kai CHEN, Cheng-zhi ZENG, Sen-sen PEI, Wen-chao LIANG",
journal="Journal of Zhejiang University Science A",
volume="23",
number="1",
pages="55-67",
year="2022",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A2100133"
}

%0 Journal Article
%T Normal gravity model for inertial navigation of a hypersonic boost-glide vehicle
%A Kai CHEN
%A Cheng-zhi ZENG
%A Sen-sen PEI
%A Wen-chao LIANG
%J Journal of Zhejiang University SCIENCE A
%V 23
%N 1
%P 55-67
%@ 1673-565X
%D 2022
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A2100133

TY - JOUR
T1 - Normal gravity model for inertial navigation of a hypersonic boost-glide vehicle
A1 - Kai CHEN
A1 - Cheng-zhi ZENG
A1 - Sen-sen PEI
A1 - Wen-chao LIANG
J0 - Journal of Zhejiang University Science A
VL - 23
IS - 1
SP - 55
EP - 67
%@ 1673-565X
Y1 - 2022
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A2100133


Abstract: 
The normal gravity model of a hypersonic boost-glide vehicle in near space is studied in this paper with the aim of alleviating the influence of the gravity model error on the precision of the inertial navigation system (INS) during flight. First, a spherical harmonic model of the Earth’s gravitational field is introduced and the normal gravity of the Earth is derived from it. Then, the coordinate transformation needed for the application of the gravity model to the near-space navigation algorithm is formulated. Subsequently, the gravity disturbance in near space and the impact of J2 and J4 gravity truncation errors are analyzed. Finally, different normal gravity models and different precisions of inertial measurement unit (IMU) are exploited to simulate the near-space navigation algorithm. Based on this, the influence of the independent and combined effects caused by the interference factors is analyzed, and the applicable conditions of the normal gravity model are discussed.

用于高超声速助推滑翔飞行器惯性导航的正常重力模型

目的:地球真实重力场建模复杂,惯性导航通常使用正常重力模型近似地球真实重力。这种做法能满足大部分高超声速助推滑翔(HBG)飞行器导航系统的精度要求,但在一些已出现的高精度惯性导航系统中,传统重力模型的误差已不可忽略,甚至成为主要的误差来源。本文旨在研究导航系统需要的实用误差更小的重力模型。
创新点:1.讨论球谐模型建立的高精度地球重力场以及正常重力场在HBG飞行器上的应用;2.将重力模型用于基准飞行轨迹生成和导航仿真;3.比较各常用重力模型的误差及计算量,并给出不同精度惯性导航系统对不同精度重力模型的选择依据。
方法:1.通过理论推导,梳理球谐模型和正常重力模型之间的关系,并给出重力计算公式和坐标转换公式;2.在计算基准飞行轨迹时使用最高精度的球谐模型;3.在导航时试验不同重力模型,并通过结果分析各模型精度;4.同时加入惯性器件误差和重力模型误差,并与重力模型单独作用时进行对比,给出不同精度惯性导航系统选择重力模型的依据。
结论:1.临近空间大部分区域的重力扰动在0.01 mg到0.10 mg之间;2.正常重力模型中J4模型接近正常重力精度极限,较J2模型精度有小幅提升;3.惯性器件精度优于0.10 mg时,要使用比正常重力模型精度更高的重力模型,如中低阶球谐模型。

关键词:高超声速助推-滑翔飞行器;惯性导航系统;正常重力模型;重力扰动

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]BahmC, BaumannE, MartinJ, et al., 2005. The X-43A Hyper-X Mach 7 flight 2 guidance, navigation, and control overview and flight test results. Proceedings of the AIAA/CIRA 13th International Space Planes and Hypersonics Systems and Technologies Conference, p.3275.

[2]BeckaS, NovackM, SlivinskyS, et al., 2008. A high reliability solid state accelerometer for ballistic missile inertial guidance. Proceedings of AIAA Guidance, Navigation and Control Conference and Exhibit, p.7300.

[3]BykerkT, VerstraeteD, SteelantJ, 2020. Low speed longitudinal aerodynamic, static stability and performance analysis of a hypersonic waverider. Aerospace Science and Technology, 96:105531.

[4]ChachanY, StevensonDJ, 2019. A linear approximation for the effect of cylindrical differential rotation on gravitational moments: application to the non-unique interpretation of Saturn’s gravity. ICARUS, 323:87-98.

[5]ChangLB, QinFJ, WuMP, 2019. Gravity disturbance compensation for inertial navigation system. IEEE Transactions on Instrumentation and Measurement, 68(10):3751-3765.

[6]ChatfieldAB, BennettMM, ChenT, 1975. Effect of gravity model inaccuracy on navigation performance. AIAA Journal, 13(11):1494-1501.

[7]ChenK, ZhouJ, ShenFQ, et al., 2020a. Hypersonic boost–glide vehicle strapdown inertial navigation system/global positioning system algorithm in a launch-centered Earth-fixed frame. Aerospace Science and Technology, 98:105679.

[8]ChenK, ShenFQ, ZhouJ, et al., 2020b. Simulation platform for SINS/GPS integrated navigation system of hypersonic vehicles based on flight mechanics. Sensors, 20(18):5418.

[9]ChenK, ShenFQ, ZhouJ, et al., 2020c. SINS/BDS integrated navigation for hypersonic boost-glide vehicles in the launch-centered inertial frame. Mathematical Problems in Engineering, 2020:7503272.

[10]ChenQ, PoropatL, ZhangLJ, et al., 2018. Validation of the EGSIEM GRACE gravity fields using GNSS coordinate timeseries and in-situ ocean bottom pressure records. Remote Sensing, 10(12):1976.

[11]ClaessensSJ, HirtC, 2015. A surface spherical harmonic expansion of gravity anomalies on the ellipsoid. Journal of Geodesy, 89(10):1035-1048.

[12]FoersteC, BruinsmaSL, AbrykosovO, et al., 2014. EIGEN-6C4 the Latest Combined Global Gravity Field Model Including GOCE Data Up to Degree and Order 2190 of GFZ Potsdam and GRGS Toulouse. GFZ Data Services.

[13]GuyM, KeithRD, 1998. On the efficient calculation of ordinary and generalized spherical harmonics. Geophysical Journal International, 135(1):307-309.

[14]HsuDY, 1996. Comparison of four gravity models. Proceedings of Position, Location and Navigation Symposium, p.631-635.

[15]PavlisNK, HolmesSA, KenyonSC, et al., 2012. The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). Journal of Geophysical Research, 117:B04406.

[16]SlobbeC, KleesR, FarahaniHH, et al., 2019. The impact of noise in a GRACE/GOCE global gravity model on a local quasi-geoid. Journal of Geophysical Research, 124(3):3219-3237.

[17]SteffesSR, 2013. Development and Analysis of SHEFEX-2 Hybrid Navigation System Experiment. MS Thesis, University of Bremen, Bremen, Germany.

[18]TodorokiharaM, SatoK, KobayashiY, 2018. A resonant frequency shift quartz accelerometer with 1st order frequency ΔΣ modulators for a high performance MEMS IMU. Proceedings of DGON Inertial Sensors and Systems, p.1-15.

[19]TsoulisD, PatlakisK, 2014. Spectral assessment of isostatic gravity models against CHAMP, GRACE, GOCE satellite-only and combined gravity models. Acta Geophysica, 62(4):679-698.

[20]WalkerS, SherkJ, ShellD, et al., 2008. The DARPA/AF falcon program: the hypersonic technology vehicle #2 (HTV-2) flight demonstration phase. Proceedings of the 15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, p.2539.

[21]YounisGKA, JägerR, BeckerM, 2013. Transformation of global spherical harmonic models of the gravity field to a local adjusted spherical cap harmonic model. Arabian Journal of Geosciences, 6(2):375-381.

[22]ZhangCX, WangX, SongLL, et al., 2021. Temperature hysteresis mechanism and compensation of quartz flexible accelerometer in aerial inertial navigation system. Sensors, 21(1):294.

[23]ZhuZS, TanH, JiaY, et al., 2020. Research on the gravity disturbance compensation terminal for high-precision position and orientation system. Sensors, 20(17):4932.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2022 Journal of Zhejiang University-SCIENCE