Full Text:   <213>

Summary:  <36>

CLC number: 

On-line Access: 2022-05-10

Received: 2021-12-31

Revision Accepted: 2022-03-03

Crosschecked: 2022-05-11

Cited: 0

Clicked: 117

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Liang LU

https://orcid.org/0000-0002-9403-330X

Meng-ru LI

https://orcid.org/0000-0002-8592-6130

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2022 Vol.23 No.4 P.314-328

http://doi.org/10.1631/jzus.A2100685


Analysis of fretting wear behavior of unloading valve of gasoline direct injection high-pressure pump


Author(s):  Liang LU, Yin-peng XU, Meng-ru LI, Qi-long XUE, Man-yi ZHANG, Liang-liang LIU, Zhong-yu WU

Affiliation(s):  School of Mechanical Engineering, Tongji University, Shanghai 201804, China; more

Corresponding email(s):   limengru@tongji.edu.cn

Key Words:  Fretting wear behavior, Unloading valve, Experimental and numerical analyses, High pressure


Liang LU, Yin-peng XU, Meng-ru LI, Qi-long XUE, Man-yi ZHANG, Liang-liang LIU, Zhong-yu WU. Analysis of fretting wear behavior of unloading valve of gasoline direct injection high-pressure pump[J]. Journal of Zhejiang University Science A, 2022, 23(4): 314-328.

@article{title="Analysis of fretting wear behavior of unloading valve of gasoline direct injection high-pressure pump",
author="Liang LU, Yin-peng XU, Meng-ru LI, Qi-long XUE, Man-yi ZHANG, Liang-liang LIU, Zhong-yu WU",
journal="Journal of Zhejiang University Science A",
volume="23",
number="4",
pages="314-328",
year="2022",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A2100685"
}

%0 Journal Article
%T Analysis of fretting wear behavior of unloading valve of gasoline direct injection high-pressure pump
%A Liang LU
%A Yin-peng XU
%A Meng-ru LI
%A Qi-long XUE
%A Man-yi ZHANG
%A Liang-liang LIU
%A Zhong-yu WU
%J Journal of Zhejiang University SCIENCE A
%V 23
%N 4
%P 314-328
%@ 1673-565X
%D 2022
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A2100685

TY - JOUR
T1 - Analysis of fretting wear behavior of unloading valve of gasoline direct injection high-pressure pump
A1 - Liang LU
A1 - Yin-peng XU
A1 - Meng-ru LI
A1 - Qi-long XUE
A1 - Man-yi ZHANG
A1 - Liang-liang LIU
A1 - Zhong-yu WU
J0 - Journal of Zhejiang University Science A
VL - 23
IS - 4
SP - 314
EP - 328
%@ 1673-565X
Y1 - 2022
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A2100685


Abstract: 
The high pressures in gasoline direct injection technology lead to structural damage in some hydraulic components, especially annular damage on the contact area of the valve ball and on the valve seat of the spherical unloading valve in the high-pressure pump. In previous study, the authors have analyzed the damage on the unloading valve and demonstrated that it is caused neither by static damage nor fatigue damage and have put forward the hypothesis of fretting wear. This paper is based on the establishment of the statically indeterminate structure of the unloading valve. The micro friction parameters (stress, friction coefficient, etc.) required for the numerical iterative calculation of fretting wear are calculated. In addition, based on the grid adaptive technology and a modified Archard wear model, the fretting wear is calculated quantitatively and is in good agreement with experimental results. Based on that verification, the wear laws of the valve ball and valve seat under the same hardness, different contact angles, and different assembly stresses, are analyzed in detail, and reasoned suggestions for the structural design and assembly design of the ball valve are given.

汽油直喷高压泵卸荷阀微动磨损特性分析

作者:陆亮1,2,4,徐寅鹏1,李梦如1,薛齐龙1,张满意3,刘亮亮3,伍中宇3
机构:1同济大学,机械与能源工程学院,中国上海,201804;2浙江大学,流体动力与机电系统国家重点实验室,中国杭州,310027;3联合汽车电子有限公司,中国上海,200120;4自主智能无人系统前沿科学中心,中国上海,201210
目的:汽油直喷技术的高压化趋势会导致泵阀组件磨损、振动、噪声、气蚀等严重问题。研究实践中发现高压泵卸荷阀的阀球与阀座接触面存在环形损伤。作者的前期研究已指出损伤非静力或疲劳所致,而是在微观形貌上更具有微动磨损的特点。基于微动磨损的假设,本文首先针对卸荷阀超静定结构进行建模分析,获得磨损仿真边界条件,基于微动磨损数学模型与数值仿真网格自适应技术定量分析磨损量伴随结构参数的变化规律,并提出结构改进的建议。
创新点:1.基于超静定结构建模解析,建立准确的微动磨损数值仿真边界条件;2.基于网格自适应技术复现了磨损过程,结合实验验证证实损伤的微动磨损机制。
方法:1.通过构建模块化的实验系统并搭建模拟微动磨损行为的实验台获得球阀微动磨损的实验数据(图3和4);2.通过理论推导,构建球阀微动磨损超静定受力模型,得到仿真计算所需微动边界条件(公式(1)~(10));3.通过对Archard磨损模型进行改进获得适用于有限元计算的磨损公式,并结合迭代加速计算方法和网格自适应技术建立球阀微动磨损定量数值计算模型(图11)。4.模型解析获得规律,提出结构改进建议。
结论:1.微动磨损的实验结果与仿真结果具有良好的一致性,证明了球阀微动磨损仿真数值计算模型的准确性;2.阀球的磨损宽度和磨损深度都随着接触半角的增大而减小;3.阀球的磨损宽度和磨损深度都随着阀球半径的增大而减小。

关键词:微动磨损特性;卸荷阀;实验和数值分析;高压化

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]ArchardJF, 1953. Contact and rubbing of flat surfaces. Journal of Applied Physics, 24(8):981‍-988.

[2]BorgJ, WatanabeA, TokuoK, 2012. Mitigation of noise and vibration in the high-pressure fuel system of a gasoline direct injection engine. Procedia-Social and Behavioral Sciences, 48:3170-3178.

[3]FouvryS, 2001. Shakedown analysis and fretting wear response under gross slip condition. Wear, 251(1-12):1320-1331.

[4]GoryachevaIG, RajeevPT, FarrisTN, 2001. Wear in partial slip contact. Journal of Tribology, 123(4):848-856.

[5]JiaL, DaiHY, SongY, 2020. Test technology research and fatigue damage prediction of a car body based on dynamic simulation load spectrum. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 21(11):923-937.

[6]JohanssonL, 1994. Numerical simulation of contact pressure evolution in fretting. Journal of Tribology, 116(2):247-254.

[7]JohnsonKL, 1985. Contact Mechanics. Cambridge University Press, Cambridge, UK.

[8]LiuZ, SunP, DuYD, et al., 2021. Improvement of combustion and emission by combined combustion of ethanol premix and gasoline direct injection in SI engine. Fuel, 292:120403.

[9]LuL, XueQL, ZhangMY, et al., 2019. Non-structural damage verification of the high pressure pump assembly ball valve in the gasoline direct injection vehicle system. Processes, 7(11):857.

[10]McCollIR, DingJ, LeenSB, 2004. Finite element simulation and experimental validation of fretting wear. Wear, 256(11-12):1114-1127.

[11]ÖqvistM, 2001. Numerical simulations of mild wear using updated geometry with different step size approaches. Wear, 249(1-2):6-11.

[12]QianYJ, GongZ, ShaoXW, et al., 2019. Numerical study of the effect of combustion chamber structure on scavenging process in a boosted GDI engine. Energy, 168:9-29.

[13]SharmaN, PatelC, TiwariN, et al., 2019. Experimental investigations of noise and vibration characteristics of gasoline-methanol blend fuelled gasoline direct injection engine and their relationship with combustion characteristics. Applied Thermal Engineering, 158:113754.

[14]SunF, XuH, 2020. A review of biomimetic research for erosion wear resistance. Bio-Design and Manufacturing, 3(4):331-347.

[15]TaoGQ, LiuXL, WenZF, et al., 2021. Formation process, key influencing factors, and countermeasures of high-order polygonal wear of locomotive wheels. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 22(1):70-84.

[16]XuB, ZhangJH, YangHY, 2012. Investigation on structural optimization of anti-overturning slipper of axial piston pump. Science China Technological Sciences, 55(11):3010-3018.

[17]XuB, ZhangJH, YangHY, et al., 2013. Investigation on the radial micro-motion about piston of axial piston pump. Chinese Journal of Mechanical Engineering, 26(2):325-333.

[18]YinYB, YuanJY, GuoSR, 2017. Numerical study of solid particle erosion in hydraulic spool valves. Wear, 392-393:174-189.

[19]ZhangC, WangS, LiJ, et al., 2020. Additive manufacturing of products with functional fluid channels: a review. Additive Manufacturing, 36:101490.

[20]ZhangJH, LyuF, XuB, et al., 2021. Simulation and experimental investigation on low wear rate surface contour of piston/cylinder pair in an axial piston pump. Tribology International, 162:107127.

[21]ZhaoF, LaiMC, HarringtonDL, 1999. Automotive spark-ignited direct-injection gasoline engines. Progress in Energy and Combustion Science, 25(5):437-562.

[22]ZhouL, ZhuY, YangHY, 2020. A new friction factor calculation model and design approach of flow channels based on additive manufacturing. Proceedings of the BATH/ASME Symposium on Fluid Power and Motion Control, Paper No. FPMC2020-2723, V001T01A010.

[23]ZhouL, ZhuY, LiuHH, et al., 2021. A comprehensive model to predict friction factors of fluid channels fabricated using laser powder bed fusion additive manufacturing. Additive Manufacturing, 47:102212.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2022 Journal of Zhejiang University-SCIENCE