Full Text:   <745>

Summary:  <228>

Suppl. Mater.: 

CLC number: 

On-line Access: 2022-11-28

Received: 2021-12-31

Revision Accepted: 2022-05-17

Crosschecked: 2022-11-28

Cited: 0

Clicked: 1956

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Tian-qi Zhang

https://orcid.org/0000-0003-0145-973X

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2022 Vol.23 No.11 P.945-954

http://doi.org/10.1631/jzus.A2100686


Visualizing the dynamic progression of backward erosion piping in a Hele-Shaw cell


Author(s):  Gang ZHENG, Jing-bo TONG, Tian-qi ZHANG, Zi-wu WANG, Xun LI, Ji-qing ZHANG, Chun-yu QI, Hai-zuo ZHOU, Yu DIAO

Affiliation(s):  MOE Key Laboratory of Coast Civil Structure Safety, Tianjin University, Tianjin 300072, China; more

Corresponding email(s):   Tianqizhang@tju.edu.cn

Key Words:  Backward erosion piping (BEP), Dynamic progression, Hele-Shaw cell, Visualize, Imaging processing technology


Share this article to: More <<< Previous Article|

Gang ZHENG, Jing-bo TONG, Tian-qi ZHANG, Zi-wu WANG, Xun LI, Ji-qing ZHANG, Chun-yu QI, Hai-zuo ZHOU, Yu DIAO. Visualizing the dynamic progression of backward erosion piping in a Hele-Shaw cell[J]. Journal of Zhejiang University Science A, 2022, 23(11): 945-954.

@article{title="Visualizing the dynamic progression of backward erosion piping in a Hele-Shaw cell",
author="Gang ZHENG, Jing-bo TONG, Tian-qi ZHANG, Zi-wu WANG, Xun LI, Ji-qing ZHANG, Chun-yu QI, Hai-zuo ZHOU, Yu DIAO",
journal="Journal of Zhejiang University Science A",
volume="23",
number="11",
pages="945-954",
year="2022",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A2100686"
}

%0 Journal Article
%T Visualizing the dynamic progression of backward erosion piping in a Hele-Shaw cell
%A Gang ZHENG
%A Jing-bo TONG
%A Tian-qi ZHANG
%A Zi-wu WANG
%A Xun LI
%A Ji-qing ZHANG
%A Chun-yu QI
%A Hai-zuo ZHOU
%A Yu DIAO
%J Journal of Zhejiang University SCIENCE A
%V 23
%N 11
%P 945-954
%@ 1673-565X
%D 2022
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A2100686

TY - JOUR
T1 - Visualizing the dynamic progression of backward erosion piping in a Hele-Shaw cell
A1 - Gang ZHENG
A1 - Jing-bo TONG
A1 - Tian-qi ZHANG
A1 - Zi-wu WANG
A1 - Xun LI
A1 - Ji-qing ZHANG
A1 - Chun-yu QI
A1 - Hai-zuo ZHOU
A1 - Yu DIAO
J0 - Journal of Zhejiang University Science A
VL - 23
IS - 11
SP - 945
EP - 954
%@ 1673-565X
Y1 - 2022
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A2100686


Abstract: 
With the utilization of underground space, backward erosion piping (BEP) has been observed in many underground structures (e.g., shield tunnels) founded on sandy aquifers. However, due to invisibility, the geometry of the eroded pipe and its spatial evolution with time during the piping process was still not clear. In this study, we developed a hele-Shaw cell to visualize the dynamic progression of BEP. With imaging process technology, we obtained a typical process of BEP (the erosion process can be divided into a piping progression phase and a piping stabilization phase), quantitatively characterized the formation of erosion pipes, and compared the patterns of erosion (e.g., the erosion area A and the maximum erosion radius Rmax) that spontaneously develop under different fluxes of water. The most interesting finding is that the sand grains in a thicker Hele-Shaw model are easier to dislodge, which is possibly due to the granular system in a thicker model having more degrees of freedom, reducing the stability of the sand grains.

采用赫尔-肖氏薄板开展向源侵蚀过程的动态可视化研究

作者:郑刚1,佟婧博1,张天奇1,王子武2,李汛1,张继清3,4,齐春雨3,4,周海祚1,刁钰1
机构:1天津大学,滨海土木工程结构与安全教育部重点实验室,中国天津,300072;2天津大学,理学院,中国天津,300072;3中国铁路设计集团,中国天津,300308;4城市轨道交通数字化建设与测评技术国家工程实验室,中国天津,300308
目的:粉土、粉(细)砂土承压含水层中的盾构隧道出现渗漏时,土颗粒会在渗流力作用下液化悬浮并随地下水涌入隧道,致使隧道外土层在高速水流侵蚀下快速流失,引起隧道受力模式改变,进而造成衬砌结构的连续破坏(损)甚至垮塌。特别地,当渗漏点位于隧道底部时,侵蚀过程类似于水利大坝中的向源侵蚀,即逆着水流方向在隧道结构底部产生侵蚀空腔,从而导致隧道底部因失去土层支撑而产生大范围沉降和错台。为研究盾构隧道结构底部某点处由径向水流(水流向漏点汇聚)引起的向源侵蚀过程及侵蚀区形态,本文采用物理学中的经典装置,即赫尔-肖氏薄板,开展一系列可视化的模型试验,研究了水流速度及试样厚度对侵蚀过程及侵蚀形态的影响,以加深对向源侵蚀机制的理解。
创新点:1.研制了用于研究汇聚流下向源侵蚀过程的赫尔-肖氏薄板仪器;2.清晰地捕捉了向源侵蚀动态发展过程;3.揭示水流速度及试样厚度对侵蚀过程及侵蚀形态的影响。
方法:1.采用恒流速试验,模拟瞬间施加水流下的向源侵蚀过程;2.通过数字图像处理技术,定量描述向源侵蚀动态发展过程;3.通过调整板间距及入流速度,分析试样厚度及水流大小对侵蚀过程及形态的影响。
结论:1.瞬时恒流下的向源侵蚀过程可分为侵蚀发展和侵蚀稳定两个阶段。2.瞬时水流速度越大,侵蚀区的形状表现为分叉越多,最大侵蚀半径越大。3.试样越厚,向源侵蚀越容易在赫尔-肖氏薄板中启动;同时侵蚀区面积越大,半径也越大。

关键词:向源侵蚀;动态发展;赫尔-肖氏薄板;可视化;数字图像处理技术

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]AkramiS, BezuijenA, van BeekV, et al., 2021. Analysis of development and depth of backward erosion pipes in the presence of a coarse sand barrier. Acta Geotechnica, 16(2):381-397.

[2]Al-HousseinyTT, TsaiPA, StoneHA, 2012. Control of interfacial instabilities using flow geometry. Nature Physics, 8(10):747-750.

[3]ChengX, XuL, PattersonA, et al., 2008. Towards the zero-surface-tension limit in granular fingering instability. Nature Physics, 4(3):234-237.

[4]Hele-ShawHS, 1898. The flow of water. Nature, 58(1489):34-36.

[5]HoltzmanR, SzulczewskiML, JuanesR, 2012. Capillary fracturing in granular media. Physical Review Letters, 108(26):264504.

[6]HuangHY, ZhangFS, CallahanP, et al., 2012. Granular fingering in fluid injection into dense granular media in a Hele-Shaw cell. Physical Review Letters, 108(25):258001.

[7]NeyerJC, 1984. Soft ground tunnel failures in Michigan. Proceedings of the International Conference on Case Histories in Geotechnical Engineering, p.1429-1434.

[8]PolJC, van KlaverenW, KanningW, et al., 2021. Progression rate of backward erosion piping: small scale experiments. Proceedings of the 10th International Conference on Scour and Erosion.

[9]RiceJ, van BeekV, BezuijenA, 2021. History and future of backward erosion research. Proceedings of the 10th International Conference on Scour and Erosion, p.1-23.

[10]RichardsKS, ReddyKR, 2012. Experimental investigation of initiation of backward erosion piping in soils. Géotechnique, 62(10):933-942.

[11]RosenbrandE, van BeekV, BezuijenA, et al., 2022. Multi-scale experiments for a coarse sand barrier against backward erosion piping. Géotechnique, 72(3):216-226.

[12]SandnesB, FlekkøyEG, KnudsenHA, et al., 2011. Patterns and flow in frictional fluid dynamics. Nature Communications, 2(1):288.

[13]van BeekVM, KnoeffH, SellmeijerH, 2011. Observations on the process of backward erosion piping in small-, medium- and full-scale experiments. European Journal of Environmental and Civil Engineering, 15(8):‍1115-1137.

[14]van BeekVM, BezuijenA, SellmeijerJB, et al., 2014. Initiation of backward erosion piping in uniform sands. Géotechnique, 64(12):927-941.

[15]van BeekVM, van EssenHM, VandenboerK, 2015. Developments in modelling of backward erosion piping. Géotechnique, 65(9):740-754.

[16]VandenboerK, 2019. A Study on the Mechanisms of Backward Erosion Piping. PhD Thesis, Ghent University, Ghent, the Netherland.

[17]VandenboerK, van BeekVM, BezuijenA, 2018. 3D character of backward erosion piping. Géotechnique, 68(1):86-90.

[18]VandenboerK, DolphenL, BezuijenA, 2019a. Backward erosion piping through vertically layered soils. European Journal of Environmental and Civil Engineering, 23(11):1404-1412.

[19]VandenboerK, CeletteF, BezuijenA, 2019b. The effect of sudden critical and supercritical hydraulic loads on backward erosion piping: small-scale experiments. Acta Geotechnica, 14(3):783-794.

[20]YaoQL, DingLQ, SunDY, et al., 2007. Experimental studies on piping in single- and two-stratum dike foundations. Water Resources and Hydropower Engineering, 38(2):13-18 (in Chinese).

[21]ZhengG, CuiT, ChengXS, et al., 2017. Introduction and analysis of an accident in a shield tunnel. Chinese Journal of Geotechnical Engineering, 39(S2):132-135 (in Chinese).

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE