CLC number:
On-line Access: 2022-12-29
Received: 2022-06-14
Revision Accepted: 2022-11-28
Crosschecked: 0000-00-00
Cited: 0
Clicked: 271
Yangyang HAN, Guoping LIU, Zhenyu LU, Huaizhi ZONG, Junhui ZHANG, Feifei ZHONG, Liyu GAO. A stability locomotion-control strategy for quadruped robots with center-of-mass dynamic planning[J]. Journal of Zhejiang University Science A, 1998, -1(-1): .
@article{title="A stability locomotion-control strategy for quadruped robots with center-of-mass dynamic planning",
author="Yangyang HAN, Guoping LIU, Zhenyu LU, Huaizhi ZONG, Junhui ZHANG, Feifei ZHONG, Liyu GAO",
journal="Journal of Zhejiang University Science A",
volume="-1",
number="-1",
pages="",
year="1998",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A2200310"
}
%0 Journal Article
%T A stability locomotion-control strategy for quadruped robots with center-of-mass dynamic planning
%A Yangyang HAN
%A Guoping LIU
%A Zhenyu LU
%A Huaizhi ZONG
%A Junhui ZHANG
%A Feifei ZHONG
%A Liyu GAO
%J Journal of Zhejiang University SCIENCE A
%V -1
%N -1
%P
%@ 1673-565X
%D 1998
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A2200310
TY - JOUR
T1 - A stability locomotion-control strategy for quadruped robots with center-of-mass dynamic planning
A1 - Yangyang HAN
A1 - Guoping LIU
A1 - Zhenyu LU
A1 - Huaizhi ZONG
A1 - Junhui ZHANG
A1 - Feifei ZHONG
A1 - Liyu GAO
J0 - Journal of Zhejiang University Science A
VL - -1
IS - -1
SP -
EP -
%@ 1673-565X
Y1 - 1998
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A2200310
Abstract: Locomotion stability is essential for controlling quadruped robots and adapting them to unstructured terrain. We propose a control strategy with center-of-mass (CoM) dynamic planning for the stable locomotion of these robots. The motion trajectories of the swing legs are synchronized with the CoM of the robot. To implement the synchronous control scheme, we adjusted the swing legs to form a support triangle. The strategy is applicable to both static walk gait and dynamic trot gait. In the motion control processes of the robot legs, the distribution of the ground reaction forces is optimized to minimize joint torque and locomotion energy consumption. We also used an improved joint-torque controller with varied controller coefficients in the stance and swing phases. The simulation and experimental results demonstrate that the robot can complete omnidirectional locomotion in both walk and trot gaits. At a given locomotion speed, the stability margins for the robot during walking and trotting were 27.25% and 37.25% higher, respectively, than in the scheme without CoM planning. The control strategy with energy consumption optimization (ECO) reduced the energy consumption of the robot in walk and trot gaits by 11.25% and 13.83%, respectively, from those of the control scheme without ECO.
Open peer comments: Debate/Discuss/Question/Opinion
<1>