CLC number: TP242.1
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 0000-00-00
Cited: 0
Clicked: 5729
Xu-yang WANG, Zhao-hong XU, Tian-sheng LÜ. Disturbance rejection control based on acceleration projection method for walking robots[J]. Journal of Zhejiang University Science A, 2008, 9(11): 1531-1538.
@article{title="Disturbance rejection control based on acceleration projection method for walking robots",
author="Xu-yang WANG, Zhao-hong XU, Tian-sheng LÜ",
journal="Journal of Zhejiang University Science A",
volume="9",
number="11",
pages="1531-1538",
year="2008",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A0820242"
}
%0 Journal Article
%T Disturbance rejection control based on acceleration projection method for walking robots
%A Xu-yang WANG
%A Zhao-hong XU
%A Tian-sheng LÜ
%A
%J Journal of Zhejiang University SCIENCE A
%V 9
%N 11
%P 1531-1538
%@ 1673-565X
%D 2008
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A0820242
TY - JOUR
T1 - Disturbance rejection control based on acceleration projection method for walking robots
A1 - Xu-yang WANG
A1 - Zhao-hong XU
A1 - Tian-sheng LÜ
A1 -
J0 - Journal of Zhejiang University Science A
VL - 9
IS - 11
SP - 1531
EP - 1538
%@ 1673-565X
Y1 - 2008
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A0820242
Abstract: This paper presents a disturbance rejection scheme for walking robots under unknown external forces and moments. The disturbance rejection strategy, which combines the inverse dynamics control with the acceleration projection onto the ZMP (zero moment point)-plane, can ensure the overall dynamic stability of the robot during tracking the pre-computed trajectories. Under normal conditions, i.e., the system is dynamically balanced, a primary inverse dynamics control is utilized. In the case that the system becomes unbalanced due to external disturbances, the acceleration projection control (APC) loop, will be activated to keep the dynamic stability of the walking robot through modifying the input torques. The preliminary experimental results on a robot leg demonstrate that the proposed method can actually make the robot keep a stable motion under unknown external perturbations.
[1] Hirai, K., Hirose, M., Takenada, T., 1998. The Development of Honda Humanoid Robot. IEEE International Conference on Robotics and Automation, Belgium, p.1321-1326.
[2] Kajita, S., Yokoi, K., Saigo, M., Tanie, K., 2001. Balancing a Humanoid Robot Using Backdrive Concerned Torque Control and Direct Angular Momentum Feedback. IEEE International Conference on Robotics and Automation, p.3376-3382.
[3] Kajita, S., Kanehiro, F., Kaneko, K., Fujiwara, K., Harada, K., Yokoi, K., Hirukawa, H., 2003a. Biped Walking Pattern Generation by Using Preview Control of Zero-Moment Point. IEEE International Conference on Robotics and Automation, Taipei, Taiwan, p.1620-1626.
[4] Kajita, S., Kanehiro, F., Kaneko, K., Fujiwara, K., Harada, K., Yokoi, K., Hirukawa, H., 2003b. Resolved Momentum Control: Humanoid Motion Planning Based on the Linear and Angular Momentum. IEEE/RSJ International Conference on Intelligent Robots and Systems, Las Vegas, USA, p.1644-1650.
[5] Kondak, K., Hommel, G., 2003. Control and Online Computation of Stable Movement for Biped Robots. IEEE Conference on Intelligent Robots and Systems, Las Vegas, USA, p.874-879.
[6] Matsouka, K., 1979. A Model of Repetitive Hopping Movements in Man. In: Proceedings of the Fifth World Congress on Theory of Machines and Mechanisms. American Society of Mechanical Engineers, New York, p.1168-1171.
[7] Mitobe, K., Gapi, G., Nasu, Y., 2004. A new control method for walking robots based on angular momentum. Mechatronics, 14:163-174.
[8] Pannu, S., Becker, G., Kazerooni, H., 1995. Stability of a One Legged Robot Using μ-Synthesis. Proceedings of IEEE International Conference on Robotics and Automation, N-agoya, Japan, p.685-690.
[9] Raibert, M. H., 1984. Hopping in legged systems—modeling and simulation for the two-dimensional one-legged case. IEEE Transactions on Systems, Man and Cybernetics, 14(3):451-463.
[10] Sugihar, T., Nakamur, Y., Inoue, H., 2002. Realtime Humanoid Motion Generation through ZMP Manipulation Based on Inverted Pendulum Control. IEEE International Conference on Robotics and Automation Washington, DC, p.1404-1409.
[11] Takanishi, A., Takeya, T., Karaki, H., Kato, I., 1990. A Control Method for Dynamic Biped Walking under Unknown External Force. Proceedings of IEEE International Workshop on Intelligent Robots and Systems, Ibaraki, Japan, p.795-801.
[12] Vukobratovic, M., 2004. Zero-moment point—thirty five years of its life. International Journal of Humanoid Robotics, 1(1):157-173.
Open peer comments: Debate/Discuss/Question/Opinion
<1>