Full Text:   <528>

Summary:  <34>

Suppl. Mater.: 

CLC number: 

On-line Access: 2025-01-21

Received: 2023-08-04

Revision Accepted: 2024-01-08

Crosschecked: 2025-01-21

Cited: 0

Clicked: 869

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Maoying ZHOU

https://orcid.org/0000-0002-0306-7863

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2025 Vol.26 No.1 P.78-86

http://doi.org/10.1631/jzus.A2300398


Design and experimental validation of an electromagnetic launching mechanism for a tethered net


Author(s):  Zongming ZHU, Weihao LUO, Zongjing LIN, Yuzhe KANG, Maoying ZHOU, Ban WANG, Huawei QIN

Affiliation(s):  School of Mechanical Engineering, Hangzhou Dianzi University, Hangzhou310018, China

Corresponding email(s):   myzhou@hdu.edu.cn, bigban@zju.edu.cn

Key Words:  Electromagnetic launching, Tethered-net launching, High-altitude rescue, Trajectory


Share this article to: More <<< Previous Article|

Zongming ZHU, Weihao LUO, Zongjing LIN, Yuzhe KANG, Maoying ZHOU, Ban WANG, Huawei QIN. Design and experimental validation of an electromagnetic launching mechanism for a tethered net[J]. Journal of Zhejiang University Science A, 2025, 26(1): 78-86.

@article{title="Design and experimental validation of an electromagnetic launching mechanism for a tethered net",
author="Zongming ZHU, Weihao LUO, Zongjing LIN, Yuzhe KANG, Maoying ZHOU, Ban WANG, Huawei QIN",
journal="Journal of Zhejiang University Science A",
volume="26",
number="1",
pages="78-86",
year="2025",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A2300398"
}

%0 Journal Article
%T Design and experimental validation of an electromagnetic launching mechanism for a tethered net
%A Zongming ZHU
%A Weihao LUO
%A Zongjing LIN
%A Yuzhe KANG
%A Maoying ZHOU
%A Ban WANG
%A Huawei QIN
%J Journal of Zhejiang University SCIENCE A
%V 26
%N 1
%P 78-86
%@ 1673-565X
%D 2025
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A2300398

TY - JOUR
T1 - Design and experimental validation of an electromagnetic launching mechanism for a tethered net
A1 - Zongming ZHU
A1 - Weihao LUO
A1 - Zongjing LIN
A1 - Yuzhe KANG
A1 - Maoying ZHOU
A1 - Ban WANG
A1 - Huawei QIN
J0 - Journal of Zhejiang University Science A
VL - 26
IS - 1
SP - 78
EP - 86
%@ 1673-565X
Y1 - 2025
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A2300398


Abstract: 
high-altitude rescue is dangerous and difficult. A new rescue method is proposed here based on electromagnetically launched tethered nets. Four electromagnetic launching units are attached to a revolving platform, from which four projectiles are launched. The four projectiles are connected to a tethered net, bringing it into motion. As the tethered net approaches and comes into contact with the object, the object will be trapped, and the rescue task will then be completed as long as the tethered net can be restored along with the trapped object. The structural design of the electromagnetic launching unit is presented with the established mathematical model. The motion characteristics of the launched projectiles are studied and their exit velocities are modeled and measured. Terminal velocities of these projectiles are characterized, and the final shape and position of the projected tethered net are obtained. This study validates the feasibility of using electromagnetically launched tethered nets to perform high-altitude rescues.

绳网电磁弹射装置的设计和实验验证

作者:朱宗明,罗韦昊,林宗璟,亢玉哲,周茂瑛,王班,秦华伟
机构:杭州电子科技大学,机械工程学院,中国杭州,310018
目的:目前柔性绳网捕获技术的主要发射方式存在发射效率低、产生的噪音大和产生的冲击大等不足。针对传统绳网发射方式的缺陷,本文旨在提出并设计一种基于电磁弹射的绳网发射装置,以期通过实验分析及可行性验证,为绳网发射技术提供一种新途径。
创新点:1.建立了弹丸在磁阻式线圈发射器工作时的理论模型,得到了弹丸出口速度与电解电容初始充电电压之间的关系;2.建立了弹丸飞行的动力学模型,并通过实验分析和验证了该模型的有效性;3.设计并制作了基于电磁弹射的绳网发射样机,并通过目标捕获实验验证了该样机的有效性。
方法:1.通过实验分析,验证磁阻式线圈发射器工作时的电流变化情况(图4);2.通过对弹丸的运动学建模与飞行轨迹观测实验,模拟弹丸在不同连接方式下的运动规律(图5和6);3.通过绳网发射样机对目标的捕获实验,验证其捕获目标的可行性(图7)。
结论:1.提高电解电容的初始充电电压可提高弹丸的出口速度;2.无论连接方式如何,随着发射角度的增加,绳网达到最大展开所需的时间逐渐增加;3.绳网发射样机捕获目标的成功率受发射角度、受网尺寸、发射样机与目标之间的距离等因素影响。

关键词:电磁弹射;绳网发射;高空救援

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]BarnesPN, RhoadsGL, TolliverJC, et al., 2004. Compact, lightweight, superconducting power generators. The 12th Symposium on Electromagnetic Launch Technology, p.158-163.

[2]BischofB, 2003. ROGER‍–‍Robotic Geostationary Orbit Restorer. The 54th International Astronautical Congress of the International Astronautical Federation, the International Academy of Astronautics, and the International Institute of Space Law.

[3]BresieDA, AndrewsJA, 1991. Design of a reluctance accelerator. IEEE Transactions on Magnetics, 27(1):623-627.

[4]BrownMR, CothranCD, LandremanM, et al., 2002. Energetic particles from three-dimensional magnetic reconnection events in the swarthmore spheromak experiment. Physics of Plasmas, 9(5):2077-2084.

[5]ChenQQ, YangLW, ZhangQB, 2009. Dynamic model and simulation of orbital net casting and ground test. Journal of National University of Defense Technology, 31(3):16-19(in Chinese).

[6]ChenQQ, FengZW, ZhangGB, et al., 2022. Dynamic modeling and simulation of anti-UAV tethered-net capture system. Journal of National University of Defense Technology, 44(2):9-15(in Chinese).

[7]CowanM, CnareE, DugginB, et al., 1986. The reconnection gun. IEEE Transactions on Magnetics, 22(6):1429-1434.

[8]FairHD, 2009. Advances in electromagnetic launch science and technology and its applications. IEEE Transactions on Magnetics, 45(1):225-230.

[9]FarajR, PopławskiB, GabryelD, et al., 2022. Adaptive airbag system for increased evacuation safety. Engineering Structures, 270:114853.

[10]KayeRJ, 2004. Operational requirements and issues for coilgun EM launchers. The 12th Symposium on Electromagnetic Launch Technology, p.59-64.

[11]LiuYM, XiongZM, ChenX, et al., 2022. Simulation and experimental study of the traction and deployment of an interceptive space net wih anti-UAV. Acta Armamentarii, 43(9):2048-2057(in Chinese).

[12]MaWM, LuJY, LiuYQ, 2019. Research progress of electromagnetic launch technology. IEEE Transactions on Plasma Science, 47(5):2197-2205.

[13]McNabIR, 2003. Launch to space with an electromagnetic railgun. IEEE Transactions on Magnetics, 39(1):295-304.

[14]MeinelC, 2007. For love of a gun. IEEE Spectrum, 44(7):‍40-46.

[15]NechitailoNV, LewisKB, 2006. Critical velocity for rails in hypervelocity launchers. International Journal of Impact Engineering, 33(1-12):485-495.

[16]OrbachY, OrenM, EinatM, 2022. 75 m/s simulation and experiment of two-stage reluctance coilgun. Journal of Mechanical Science and Technology, 36(3):1123-1130.

[17]SinnT, McRobbM, WujekA, et al., 2013. Lessons learned from REXUS12’S Suaineadh experiment: spinning deployment of a space web in milli gravity. The 21st ESA Symposium on European Rocket and Balloon Programmes and Related Research.

[18]SladeGW, 2005. A simple unified physical model for a reluctance accelerator. IEEE Transactions on Magnetics, 41(11):4270-4276.

[19]SuZZ, ZhangT, GuoW, et al., 2015. Investigation of armature capture effect on synchronous induction coilgun. IEEE Transactions on Plasma Science, 43(5):1215-1219.

[20]YuD, JudaszA, ZhengM, et al., 2022. Design and testing of a net-launch device for drone capture. AIAA SCITECH 2022 Forum.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE