Full Text:   <4887>

CLC number: X5

On-line Access: 

Received: 2007-12-24

Revision Accepted: 2008-01-10

Crosschecked: 0000-00-00

Cited: 132

Clicked: 7761

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
1. Reference List
Open peer comments

Journal of Zhejiang University SCIENCE B 2008 Vol.9 No.3 P.210-220

http://doi.org/10.1631/jzus.B0710633


Phytoremediation of heavy metal polluted soils and water: Progresses and perspectives


Author(s):  Mohammad Iqbal LONE, Zhen-li HE, Peter J. STOFFELLA, Xiao-e YANG

Affiliation(s):  University of Florida, Institute of Food and Agricultural Sciences, Indian River Research and Education Center, Fort Pierce, Florida 34945, USA; more

Corresponding email(s):   zhe@ufl.edu

Key Words:  Environmental pollution, Heavy metals, Phytoremediation, Soil, Water


Mohammad Iqbal LONE, Zhen-li HE, Peter J. STOFFELLA, Xiao-e YANG. Phytoremediation of heavy metal polluted soils and water: Progresses and perspectives[J]. Journal of Zhejiang University Science B, 2008, 9(3): 210-220.

@article{title="Phytoremediation of heavy metal polluted soils and water: Progresses and perspectives",
author="Mohammad Iqbal LONE, Zhen-li HE, Peter J. STOFFELLA, Xiao-e YANG",
journal="Journal of Zhejiang University Science B",
volume="9",
number="3",
pages="210-220",
year="2008",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B0710633"
}

%0 Journal Article
%T Phytoremediation of heavy metal polluted soils and water: Progresses and perspectives
%A Mohammad Iqbal LONE
%A Zhen-li HE
%A Peter J. STOFFELLA
%A Xiao-e YANG
%J Journal of Zhejiang University SCIENCE B
%V 9
%N 3
%P 210-220
%@ 1673-1581
%D 2008
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B0710633

TY - JOUR
T1 - Phytoremediation of heavy metal polluted soils and water: Progresses and perspectives
A1 - Mohammad Iqbal LONE
A1 - Zhen-li HE
A1 - Peter J. STOFFELLA
A1 - Xiao-e YANG
J0 - Journal of Zhejiang University Science B
VL - 9
IS - 3
SP - 210
EP - 220
%@ 1673-1581
Y1 - 2008
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B0710633


Abstract: 
environmental pollution affects the quality of pedosphere, hydrosphere, atmosphere, lithosphere and biosphere. Great efforts have been made in the last two decades to reduce pollution sources and remedy the polluted soil and water resources. phytoremediation, being more cost-effective and fewer side effects than physical and chemical approaches, has gained increasing popularity in both academic and practical circles. More than 400 plant species have been identified to have potential for soil and water remediation. Among them, Thlaspi, Brassica, Sedum alfredii H., and Arabidopsis species have been mostly studied. It is also expected that recent advances in biotechnology will play a promising role in the development of new hyperaccumulators by transferring metal hyperaccumulating genes from low biomass wild species to the higher biomass producing cultivated species in the times to come. This paper attempted to provide a brief review on recent progresses in research and practical applications of phytoremediation for soil and water resources.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1] Alloway, B.J., 1995. Heavy Metals in Soils. Blackie Academic & Professional, London.

[2] Baker, A.J.M., McGrath, S.P., Reeves, R.D., Smith, J.C.A., 2000. Metal Hyperaccumulator Plants: A Review of the Ecology and Physiology of a Biological Resource for Phytoremediation of Metal-Polluted Soils. In: Terry, N., Banuelos, G. (Eds.), Phytoremediation of Contaminated Soil and Water. Lewis Publishers, Boca Raton, p.85-108.

[3] Brooks, R.R., 1998. Plants that Hyperaccumulate Heavy Metals. CAN International, Wallington, p.379.

[4] Brown, S.L., Chaney, R.L., Scott Angle, J., 1995. Zinc and cadmium uptake by hyperaccumulator thlaspi-caerulescens grown in nutrient solution. Soil Sci. Soc. Am. J., 59(1):125-133.

[5] Caille, B., Vauleon, C., Leyval, C., 2005. Metal transfer to plants grown on a dredged sediment: Use of radioactive isotope Hg-203 and titanium. Sci. Total Environ., 341(1-3):227-239.

[6] Chaney, R.L., Malik, M., Li, Y.M., Brown, S.L., Brewer, E.P., Scott Angle, J., Baker, A.J.M., 1997. Phytoremediation of soil metals. Curr. Opin. Biotechnol., 8(3):279-284.

[7] Cosio, C., Martinoia, E., Keller, C., 2004. Hyperaccumulaton of cadium and zinc in Thlaspi caerulescens and Arabidopsis hallri at leaf cellular level. Plant Physiol, 134(2):716-725.

[8] Cunningham, S.C., Berti, W.R., 2000. Phytoextraction and Phytostabilization: Technical, Economic, and Regulatory Considerations of the Soil-Lead Issue. In: Terry, N., Banuelos, G. (Eds.), Phytoremediation of Contaminated Soil and Water. Lewis Publishers, Boca Raton, Florida, USA, p.359-376.

[9] Dos Santos, M.C., Lenzi, E., 2000. The use of aquatic macrophytes (Eichhornia crassipes) as a biological filter in the treatment of lead contaminated effluents. Environ. Technol., 21(6):615-622.

[10] Ebbs, S.D., Lasat, M.M., Brady, D.J., Cornish, J., Gordon, R., Kochian, I.V., 1997. Phytoextraction of cadmium and zinc from a contaminated soil. J. Environ. Qual., 26(5):1424-1430.

[11] Escarre, J., Lefebvre, C., Gruber, W., 2000. Zinc and cadmium hyperaccumulation by Thlaspi caerulescens from metalliferous and nonmetalliferous sites in the Mediterranean area: Implications for phytoremediation. New Phytologist, 145(3):429-437.

[12] Frey, B., Keller, C., Zierold, K., 2000. Distribution of Zn in functionally different leaf epidermal cells of the hyperaccumulator Thlaspi caerulescens. Plant Cell Environ., 23(7):675-687.

[13] Gade, L.H., 2000. Highly polar metal—Metal bonds in “early-late” heterodimetallic complexes. Angewandte Chemie-International Edition, 39(15):2658-2678.

[14] Garbisu, C., Alkorta, I., 2001. Phytoextraction: A cost effective plant-based technology for the removal of metals from the environment. Biores. Technol., 77(3):229-236.

[15] Giller, K.E., Witter, E., McGrath, S.P., 1998. Toxicity of heavy metals to microorganism and microbial processes in agricultural soils: A review. Soil Biol. Bichem., 30(10-11):1389-1414.

[16] Gisbert, C., Ros, R., de Haro, A., Walker, D.J., Pilar Bernal, M., Serrano, R., Avino, J.N., 2003. A plant genetically modified that accumulates Pb is especially promising for phytoremediation. Biochem. Biophys. Res. Commun., 303(2):440-445.

[17] Gove, B., Hutchison, J.J., Young, S.D., Craigen, J., McGrath, S.P., 2002. Uptake of metals by plants sharing a rhizosphere with the hyperaccumulation Thlaspi caerulescences. Int. J. Phytoremediation, 4(4):267-281.

[18] Ingole, N.W., Bhole, A.G., 2003. Removal of heavy metals from aqueous solution by water hyacinth (Eichhornia crassipes). J. Water Supply Res. Technol.-AQUA, 52(2):119-128.

[19] Kabata-Pendias, A., 2001. Trace Elements in Soils and Plants, 3rd Ed. CRC Press, Boca Raton, Florida.

[20] Kidd, P.S., Monterroso, C., 2005. Metal extraction by Alyssum serpyllifolium ssp. lusitanicum on mine-spoil soils from Spain. Sci. Total Environ., 336(1-3):1-11.

[21] Knox, A.S., Gamerdinger, A.P., Adriano, D.C., Kolka, R.K., Kaplan, D.I., 1999. Sources and Practices Contributing to Soil Contamination. In: Adriano, D.C., Bollag, J.M., Frankenberg, W.T.Jr, Sims, R.C. (Eds.), Bioremediation of the Contaminated Soils. Agronomy Series No. 37, ASA, CSSA, SSSA, Madison, Wisconson, USA, p.53-87.

[22] Kozdrój, J., van Elsas, J.D., 2001. Structural diversity of microbial communities in arable soils of a heavily industrialized area determined by PCR-DGGE finger printing and FAME profiling. Appl. Soil Ecol., 17(1):31-42.

[23] Kupper, H., Lombi, E., Zhao, F.J., 2000. Cellular compartmentation of cadmium and zinc in relation to other elements in the hyperaccumulator Arabidopsis halleri. Planta, 212(1):75-84.

[24] Kupper, H., Lombi, E., Zhao, F.J., Wieshammer, G., McGrath, S.P., 2001. Cellular compartmentation of nickel in the hyperaccumulators Alyssum lesbiacum, Alyssum bertolonii and Tulips goesingense. J. Exp. Bot., 52(365):2291-2300.

[25] Kurek, E., Bollag, J.M., 2004. Microbial immobilization of cadmium released from CdO in the soil. Biogeochemistry, 69(2):227-239.

[26] Landberg, T., Greger, M., 1996. Differences in uptake and tolerance to heavy metals in Salix from unpolluted and polluted areas. Applied Geochem., 11(1-2):175-180.

[27] Li, H., Cheng, F., Wang, A., Wu, T., 2005. Cadmium Removal from Water by Hydrophytes and Its Toxic Effects. Proc. of the International Symposium of Phytoremediation and Ecosystem Health. Sept. 10-13, 2005, Hangzhou, China.

[28] Li, T.Q., Yang, X.E., He, Z.L., Yang, J.Y., 2005a. Root morphology and Zn2+ uptake kinetics of the Zn hyperaccumulator of Sedum alfredii Hance. J. Integr. Plant Biol., 47(8):927-934.

[29] Li, T.Q., Yang, X.E., Jin, X.F., He, Z.L., Stoffella, P.J., Hu, Q.H., 2005b. Root response and metal accumulation in two contrasting ecotypes of Sedium alfredii Hance under lead and zinc stress. J. Environ. Sci. Health, 40(5):1081-1096.

[30] Lindqvist, O., 1991. Mercury in the Swedish environment. Water Air Soil Bull., 55(1):23-32.

[31] Liu, Y., 2006. Shrinking Arable Lands Jeopardizing China’s Food Security. Http://www.worldwatch.org/node/3912

[32] Liu, X.M., Wu, Q.T., Banks, M.K., 2005. Effect of simultaneous establishment of Sedum alfridii and Zea mays on heavy metal accumulation in plants. Int. J. Phytoremediation, 7(1):43-53.

[33] Lombi, E., Zhao, F.J., Dunham, S.J., 2000. Cadmium accumulation in populations of Thlaspi caerulescens and Thlaspi goesingense. New Phytologist, 145(1):11-20.

[34] Ma, L.Q., Komar, K.M., Tu, C., Zhang, W., Cai, Y., Kennely, E.D., 2001. A fern that hyperaccumulates arsenic. Nature, 409(6820):579.

[35] McGrath, S.P., Zhao, F.J., Lombi, E., 2001. Plant and rhizosphere process involved in phytoremediation of metal-contaminated soils. Plant Soil, 232(1/2):207-214.

[36] McKeehan, P., 2000. Brownfields: The Financial, Legislative and Social Aspects of the Redevelopment of Contaminated Commercial and Industrial Properties. Http://md3.csa.com/discoveryguide/brown/overview.php?SID=05c43ivvp4r0detrha3d9r5g

[37] Nriagu, J.O., 1994. Arsenic in the Environment. 1. Cycling and Characterization. John Wiley and Sons, New York.

[38] Nriagu, J.O., Pacyna, J.M., 1988. Quantitative assessment of worldwide contamination of air water and soils by trace metals. Nature, 333(6169):134-139.

[39] Pollard, A.J., Powell, K.D., Harper, F.A., Smith, J.A.C., 2002. The genetic basis of metal hyperaccumulation in plants. Crit. Rev. Plant Sci., 21(6):539-566.

[40] Prasad, M.N.V., Freitas, H.M.D., 2003. Metal hyperaccumulation in plants—Biodiversity prospecting for phytoremediation technology. Electron. J. Biotechnol., 93(1):285-321.

[41] Puschenreiter, M., Wieczorek, S., Horak, O., Wenzel, W.W., 2003. Chemical Changes in the rhizospher of metal hyperaccumulator and excluder Thlaspi species. J. Plant Nutri Soil Sci., 166(5):579-584.

[42] Ragnarsdottir, K.V., Hawkins, D., 2005. Trace metals in soils and their relationship with scrapie occurrence. Geochimica et Cosmochimica Acta, 69(10):A196-A196.

[43] Raskin, I., Gleba, D., Smith, R., 1996. Using plant seedlings to remove heavy metals from water. Plant Physiol., 111(2):552-552.

[44] Raskin, I., Smith, R.D., Salt, D.E., 1997. Phytoremediation of metals: Using plants to remove pollutants from the environment. Curr. Opin. Biotechnol., 8(2):221-226.

[45] Reeves, R.D., 2003. Tropical hyperaccumulators of metals and their potential for phytoextraction. Plant Soil, 249(1):57-65.

[46] Robinson, B.H., Leblanc, M., Petit, D., 1998. The potential of Thlaspi caerulescens for phytoremediation of contaminated soils. Plant Soil, 203(1):47-56.

[47] Salido, A.L., Hastly, K.L., Lim, J.M., Butcher, D.J., 2003. Phytoremediation of arsenic and lead in contaminated soils using Chinese brake ferns (Pteris vittata) and Indian mustard (Brassica juncea). Int. J. Phytoremediation, 5(2):89-103.

[48] Salt, D.E., Blaylock, M., kumar, P.B.A.N., Dushenkov, V., Ensley, B.D., Chet, L., Raskin, L., 1995. Phytoremediation: A novel strategy for the removal of toxic metals from the environment using plants. Biotechnology, 13(2):468-474.

[49] Salt, D.E., Smith, R.D., Raskin, L., 1998. Phytoremediation. Ann. Rev. Plant Phys. Plant Mol. Biol., 49(1):643-668.

[50] Sarret, G., Saumitou-Laprade, P., Bert, V., 2002. Forms of zinc accumulated in the hyperaccumulator Arabidopsis halleri. Plant Physiol., 130(4):1815-1826.

[51] Schalscha, E., Ahumada, I., 1998. Heavy metals in rivers and soils of central chile. Water Sci. Technol., 37(8):251-255.

[52] Schmidt, U., 2003. Enhancing phytoremediation: The effect of chemical soil manipulation on mobility, plant accumulation, and leaching of heavy metals. J. Environ. Qual., 32:1939-1954.

[53] Schwartz, C., Echevarria, G., Morel, J.L., 2003. Phytoextraction of cadmium with Thlaspi caerulescens. Plant Soil, 249(1):27-35.

[54] Scott Angle, J., Baker, A.J.M., Whiting, S.N., Chaney, R.L., 2003. Soil moisture effect on uptake of metals by Thlaspi, Alyssum and Berkheya. Plant Soil, 256(1):325-332.

[55] Seaward, M.R.D., Richardson, D.H.S., 1990. Atmospheric Sources of Metal Pollution and Effects on Vegetation. In: Shaw, A.J. (Ed.), Heavy Metal Tolerance in Plants: Evolutionary. Aspects, CRC Press, Florida, p.75-92.

[56] Sneller, F.E.C., van Heerwaarden, L.M., Schat, H., 2000. Toxicity, metal uptake, and accumulation of phytochelatins in silene vulgaris exposed to mixtures of cadmium and arsenate. Environ. Toxicol. Chem., 19(12):2982-2986.

[57] Uneo, D., Zhao, F.J., Ma, J.F., 2004a. Interaction between Cd and Zn in relation to their hyperacculation in Thlaspi caerulescens. Soil Sci. Plant Nutri., 50(4):591-597.

[58] Uneo, D., Zhao, F.J., Shen, R.F., Ma, J.F., 2004b. Cadmium and zinc accumulation by the hyperaccumulattor Thlaspi caerulescens from soils enriched with insoluble metal compounds. Soil Sci. Plant Nutr., 50(3-4):511-515.

[59] Walsh, P.R., Duce, R.A., Finishing, J.I., 1979. Consideration of the enrichment, sources, and flux of arsenic in the troposphere. J. Geophysical. Res., 84:1719-1726.

[60] Wang, Q., Cui, Y., Dong, Y., 2002. Phytoremediation of polluted waters potential and prospects of wetland plants. Acta Biotechnol., 22(1-2):199-208.

[61] Welch, R.M., Norvell, W.A., 1993. Growth and nutrient-uptake by barley (hordeum-vulgare l cv herta)— studies using an n-(2-ydroxyethyl) ethylenedinitrilotriacetic acid buffered nutrient solution technique. 2. Role of zinc in the uptake and root leakage of mineral nutrients. Plant Physiol., 101(2):627-631.

[62] Wenzel, W.W., Bunkowski, M., Puschenreiter, M., Horak, O., 2002. Rhizosphere characteristics of indigenously growing nickel hyperaccumulator and excluder plants on serpentine soil. Environ. Poll., 123(1):131-138.

[63] Whiting, N.S., Leake, R.J., McGrath, P.S., baker, M.J.A., 2000. Positive response to Zn and CD by roots of the Zn and Cd hyperaccumulator Thlaspi caerulescens. New Phytol., 145(2):199-210.

[64] Xiong, Y.H., Yang, X.E., Ye, Z.Q., He, Z.L., 2004. Characteristics of cadmium uptake and accumulation by two contrasting ecotypes of sedum alfredii hance. J. Environ. Sci. Health Part A, 39(11-12):2925-2940.

[65] Yang, X.E., Ye, H.B., Long, X.X., He, B., He, Z.L., Stoffella, P.J., Calvert, D.V., 2004. Uptake and accumulation of cadmium and Zinc by Sedum alfredii Hance at different Cd/Zn supply levels. J. Plant Nutr., 27(11):1963-1977.

[66] Yang, X.E., Li, T.Q., Yang, J.C., He, Z.L., Lu, L.L., Meng, F.H., 2006. Zinc compartmentation in root, transport into xylem, and absorption into leaf cells in the hyperaccumulating species of Sedum alfredii Hance. Planta, 224(1):185-195.

[67] Zaranyika, M.F., Ndapwadza, T., 1995. Uptake of Ni, Zn, Fe, Co, Cr, Pb, Cu and Cd by water hyacinth (Eichhornia crassipes) in Mukuvisi and Manyame Rivers, Zimbabwe. J. Environ. Sci. Health Part A, 30(1):157-169.

[68] Zayed, A., Gowthaman, S., Terry, N., 1998. Phytoremediation of trace elements by wetland plants: 1. Duck weed. J. Environ. Qual., 27(3):715-721.

[69] Zhang, W.H., Cai, Y., Tu, C., Ma, L.Q., 2002. Arsenic speciation and distribution in an arsenic hyper accumulating plant. Sci. Total Environ., 300(1-3):167-177.

[70] Zhang, L., Tian, S., Ye, Z., Yang, X., Peng, H., 2005. The Efficiency of Heavy Metal Removal from Contaminated Water by Elsholtzia argi and Elsholtzia splendens. Proc. of the International Symposium of Phytoremediation and Ecosystem Health. Sept. 10-13, 2005, Hangzhou, China.

[71] Zhao, F.J., Lombi, E., Breedon, T., 2000. Zinc hyperaccumulation and cellular distribution in Arabidopsis halleri. Plant Cell Environ., 23(5):507-514.

[72] Zhao, F.J., Dunham, S.J., McGrath, S.P., 2002. Arsenic hyper accumulation by different fern species. New Phytologist, 156(1):27-31.

[73] Zhu, Y.L., Zayed, A.M., Qian, J.H., De Souza, M., Terry, N., 1999. Phytoaccumulation of trace elements by wetland plants: II. Water hyacinth. J. Environ. Qual., 28(1):339-344.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE