CLC number: Q27; R54
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2010-05-11
Cited: 0
Clicked: 6071
Ling Xia, Ying-lan Gong, Xiu-wei Zhu, Yu Zhang, Qi Sun, Heng-gui Zhang. Mathematical models of canine right and left atria cardiomyocytes[J]. Journal of Zhejiang University Science B, 2010, 11(6): 402-416.
@article{title="Mathematical models of canine right and left atria cardiomyocytes",
author="Ling Xia, Ying-lan Gong, Xiu-wei Zhu, Yu Zhang, Qi Sun, Heng-gui Zhang",
journal="Journal of Zhejiang University Science B",
volume="11",
number="6",
pages="402-416",
year="2010",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B0900346"
}
%0 Journal Article
%T Mathematical models of canine right and left atria cardiomyocytes
%A Ling Xia
%A Ying-lan Gong
%A Xiu-wei Zhu
%A Yu Zhang
%A Qi Sun
%A Heng-gui Zhang
%J Journal of Zhejiang University SCIENCE B
%V 11
%N 6
%P 402-416
%@ 1673-1581
%D 2010
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B0900346
TY - JOUR
T1 - Mathematical models of canine right and left atria cardiomyocytes
A1 - Ling Xia
A1 - Ying-lan Gong
A1 - Xiu-wei Zhu
A1 - Yu Zhang
A1 - Qi Sun
A1 - Heng-gui Zhang
J0 - Journal of Zhejiang University Science B
VL - 11
IS - 6
SP - 402
EP - 416
%@ 1673-1581
Y1 - 2010
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B0900346
Abstract: The aim of this study is to build two mathematical models of canine ionic currents specific to right atria and left atria. The canine left atria mathematical model was firstly modified from the Ramirez-Nattel-Courtemanche (RNC) model using the recently available experimental data of ionic currents and was further developed based on our own experimental data. A model of right atria was then built by considering the differences between right atria and left atria. The two developed models well reproduced the experimental data on action potential morphology, the rate dependence, and action potential duration restitution. They are useful for investigating the mechanisms underlying the heterogeneity of canine regional action potentials and would help the simulation of whole heart excitation propagation and cardiac arrhythmia in the near future.
[1]Beeler, G.W., Reuter, H., 1977. Reconstruction of the action potential of ventricular myocardial fibres. The Journal of Physiology, 268(1):177-210.
[2]Cha, T.J., Ehrlich, J.R., Zhang, L., Nattel, S., 2004. Atrial ionic remodeling induced by atrial tachycardia in the presence of congestive heart failure. Circulation, 110(12):1520-1526.
[3]Cha, T.J., Ehrlich, J.R., Zhang, L., Chartier, D., Leung, T.K., Nattel, S., 2005. Atrial tachycardia remodeling of pulmonary vein cardiomyocytes: comparison with left atrium and potential relation to arrhythmogenesis. Circulation, 111(6):728-735.
[4]Courtemanche, M., Ramirez, R.J., Nattel, S., 1998. Ionic mechanisms underlying human atrial action potential properties: insights from a mathematical model. American Journal of Physiology, 275(5):H301-H321.
[5]Demir, S.S., Clark, J.W., Murphey, C.R., Giles, W.R., 1994. A mathematical model of a rabbit sinoatrial node cell. American Journal of Physiology, 266(3):C832-C852.
[6]Dun, W., Yagi, T., Rosen, M.R., Boyden, P.A., 2003. Calcium and potassium currents in cells from adult and aged canine right atria. Cardiovascular Research, 58(3):526-534.
[7]Ehrlich, J.R., Cha, T.J., Zhang, L., Chartier, D., Melnyk, P., Hohnloser, H., Nattel, S., 2003. Cellular electrophysiology of canine pulmonary vein cardiomyocytes: action potential and ionic current properties. The Journal of Physiology, 551(3):801-813.
[8]Ehrlich, J.R., Cha, T.J., Zhang, L., Chartier, D., Villeneuve, L., Hebert, T.E., Nattel, S., 2004. Characterization of a hyperpolarization-activated time-dependent potassium current in canine cardiomyocytes from pulmonary vein myocardial sleeves and left atrium. The Journal of Physiology, 557(2):583-597.
[9]Fareh, S., Villemaire, C., Nattel, S., 1998. Importance of refractoriness heterogeneity in the enhanced vulnerability to atrial fibrillation induction caused by tachycardia-induced atrial electrical remodeling. Circulation, 98(20):2202-2209.
[10]Feng, J., Yue, L., Wang, Z., Nattel, S., 1998. Ionic mechanisms of regional action potential heterogeneity in the canine right atrium. Circulation Research, 83(5):541-551.
[11]Garfinkel, A., Kim, Y.H., Voroshilovsky, O., Qu, Z., Kil, J.R., Lee, M.H., Karagueuzian, H.S., Weiss, J.N., Chen, P.S., 2000. Preventing ventricular fibrillation by flattening cardiac restitution. Proceedings of the National Academy of Sciences, 97(11):6061-6066.
[12]Hodgkin, A.L., Huxley, A.F., 1952. A quantitative description of membrane current and its application to conduction and excitation in nerve. The Journal of Physiology, 117(4):500-544.
[13]Karma, A., 1994. Electrical alternans and spiral wave breakup in cardiac tissue. Chaos, 4(3):461-472.
[14]Kneller, J., Ramirez, R.J., Chertier, D., Courtemanche, M., Nattel, S., 2002. Time-dependent transients in an ionically based mathematical model of the canine atrial action potential. American Journal of Physiology, 282(4):H1437-H1451.
[15]Koller, M.L., Riccio, M.L., Gilmour, R.F., 1998. Dynamic restitution of action potential duration during electrical alternans and ventricular fibrillation. American Journal of Physiology, 275(5):H1635-H1642.
[16]Li, D., Melnyk, P., Feng, J., Wang, Z., Petrecca, K., Shrier, A., Nattel, S., 2000. Effects of experimental heart failure on atrial cellular and ionic electrophysiology. Circulation, 101(22):2631-2638.
[17]Li, D., Zhang, L., Kneller, J., Nattel, S., 2001. Potential ionic mechanism for repolarization differences between canine right and left atrium. Circulation Research, 88(11):1168-1175.
[18]Lindblad, D.S., Murphey, C.R., Clark, J.W., Giles, W.R., 1996. A model of the action potential and underlying membrane currents in a rabbit atrial cell. American Journal of Physiology, 271(4):H1666-H1696.
[19]Luo, C.H., Rudy, Y., 1991. A model of the ventricular cardiac action potential: depolarization, repolarization, and their interaction. Circulation Research, 68(6):1501-1526.
[20]Luo, C.H., Rudy, Y., 1994a. A dynamic model of the cardiac ventricular action potential. I. Simulations of ionic currents and concentration changes. Circulation Research, 74(6):1071-1096.
[21]Luo, C.H., Rudy, Y., 1994b. A dynamic model of the cardiac ventricular action potential. II. Afterdepolarizations, triggered activity, and potentiation. Circulation Research, 74(6):1097-1113.
[22]Noble, D., 1960. Cardiac action and pacemaker potentials based on the Hodgkin-Huxley equations. Nature, 188(4749):495-497.
[23]Nygren, A., Fiset, C., Firek, L., Clark, J.W., Lindblad, D.S., Clark, R.B., Giles, W.R., 1998. Mathematical model of an adult human atrial cell: the role of K+ currents in repolarization. Circulation Research, 82(1):63-81.
[24]Qu, Z., Weiss, J.N., Garfinkel, A., 1999. Cardiac electrical restitution properties and stability of reentrant spiral waves: a simulation study. American Journal of Physiology, 276(1):H269-H283.
[25]Ramirez, R.J., Nattel, S., Courtemanche, M., 2000. Mathematical analysis of canine atrial action potentials: rate, regional factors, and electrical remodeling. American Journal of Physiology, 279(4):H1767-H1785.
[26]Rudy, Y., Luo, C.H., 1993. Cellular responses to electrical stimulation: a study using a model of the ventricular cardiac action potential. Advances in Experimental Medicine and Biology, 346(1):79-90.
[27]ten Tusscher, K.H.W.J., Noble, D., Noble, P.J., Panfilov, A.V., 2004. A model for human ventricular tissue. American Journal of Physiology, 286(4):H1573-H1589.
[28]Wang, Z., Fermini, B., Nattel, S., 1993. Sustained depolarization-induced outward current in human atrial myocytes. Evidence for a novel delayed rectifier K+ current similar to Kv1.5 cloned channel currents. Circulation Research, 73(6):1061-1076.
[29]Wang, Z., Feng, J., Shi, H., Pond, A., Nerbonne, J.M., Nattel, S., 1999. Potential molecular basis of different physiological properties of the transient outward K+ current in rabbit and human atrial myocytes. Circulation Research, 84(5):551-561.
[30]Xia, L., Zhang, Y., Zhang, H., Wei, Q., Liu, F., Crozier, S., 2006. Simulation of Brugada syndrome using cellular and three-dimensional whole-heart modeling approaches. Physiological Measurement, 27(11):1125-1142.
[31]Yue, L., Feng, J., Gaspo, R., Li, G.R., Wang, Z., Nattel, S., 1997. Ionic remodeling underlying action potential changes in a canine model of atrial fibrillation. Circulation Research, 81(4):512-525.
[32]Zhang, H., Holden, A.V., Boyet, M.R., 2001. Gradient model versus mosaic model of the sinoatrial node. Circulation, 103:584-588.
[33]Zobel, C., Cho, H.C., Nguyen, T., Pekhletski, R., Diaz, R.J., Wilson, G.J., Backx, P.H., 2003. Molecular dissection of the inward rectifier potassium current (IK1) in rabbit cardiomyocytes: evidence for heteromeric co-assembly of Kir2.1 and Kir2.2. The Journal of Physiology, 550(2):365-372.
Open peer comments: Debate/Discuss/Question/Opinion
<1>