Full Text:   <4359>

CLC number: S682.2+9

On-line Access: 2012-01-18

Received: 2010-12-08

Revision Accepted: 2011-04-24

Crosschecked: 2011-10-18

Cited: 19

Clicked: 5872

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2012 Vol.13 No.2 P.136-144

http://doi.org/10.1631/jzus.B1000425


Chlorocholine chloride and paclobutrazol treatments promote carbohydrate accumulation in bulbs of Lilium Oriental hybrids ‘Sorbonne’


Author(s):  Ri-ru Zheng, Yun Wu, Yi-ping Xia

Affiliation(s):  Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029, China; more

Corresponding email(s):   ypxia@zju.edu.cn

Key Words:  Carbohydrate, Chlorocholine chloride, Gibberellic acid, Lilium Oriental hybrids ‘, Sorbonne’


Ri-ru Zheng, Yun Wu, Yi-ping Xia. Chlorocholine chloride and paclobutrazol treatments promote carbohydrate accumulation in bulbs of Lilium Oriental hybrids ‘Sorbonne’[J]. Journal of Zhejiang University Science B, 2012, 13(2): 136-144.

@article{title="Chlorocholine chloride and paclobutrazol treatments promote carbohydrate accumulation in bulbs of Lilium Oriental hybrids ‘Sorbonne’",
author="Ri-ru Zheng, Yun Wu, Yi-ping Xia",
journal="Journal of Zhejiang University Science B",
volume="13",
number="2",
pages="136-144",
year="2012",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1000425"
}

%0 Journal Article
%T Chlorocholine chloride and paclobutrazol treatments promote carbohydrate accumulation in bulbs of Lilium Oriental hybrids ‘Sorbonne’
%A Ri-ru Zheng
%A Yun Wu
%A Yi-ping Xia
%J Journal of Zhejiang University SCIENCE B
%V 13
%N 2
%P 136-144
%@ 1673-1581
%D 2012
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1000425

TY - JOUR
T1 - Chlorocholine chloride and paclobutrazol treatments promote carbohydrate accumulation in bulbs of Lilium Oriental hybrids ‘Sorbonne’
A1 - Ri-ru Zheng
A1 - Yun Wu
A1 - Yi-ping Xia
J0 - Journal of Zhejiang University Science B
VL - 13
IS - 2
SP - 136
EP - 144
%@ 1673-1581
Y1 - 2012
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1000425


Abstract: 
The present study was to test the hypothesis that the plant growth retardants chlorocholine chloride (CCC) and paclobutrazol (PBZ) could improve the carbohydrate accumulation in lily bulbs by enhancing photosynthetic capacity and changing endogenous hormones. Plants of Lilium Oriental hybrids ‘;sorbonne’; were treated with a foliar spray of CCC or PBZ (both at 300 mg/L) solution, at six weeks after planting (6 WAP). The morphological parameters, endogenous hormone contents (gibberellic acid (GA), abscisic acid (ABA), and indole-3-acetic acid (IAA)), and carbohydrate contents were measured from 6 to 18 WAP, at 2-week intervals. The results showed that CCC increased the biomass of leaves and stems which might produce more photoassimilates available for transportation and utilization. However, PBZ treatment suppressed vegetative growth and favored photoassimilate transportation into bulbs. A slight delay of bud and anthesis formation was observed in both treated plants. CCC and PBZ treatments substantially enhanced the sucrose contents in leaves probably due to the increase of chlorophyll contents. Treatment with CCC or PBZ decreased GA but increased IAA contents in lily bulbs which might stimulate starch accumulation and formation of new scales. Our experiment suggested that CCC or PBZ treatment is an effective method to promote carbohydrate accumulation in lily bulbs.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Abdul Jaleel, C., Kishorekumar, A., Manivannan, P., Sankar, B., Gomathinayagam, M., Gopi, R., Somasundaram, R., Panneerselvam, R., 2007a. Alterations in carbohydrate metabolism and enhancement in tuber production in white yam (Dioscorea rotundata Poir.) under triadimefon and hexaconazole applications. Plant Growth Regul., 53(1):7-16.

[2]Abdul Jaleel, C., Manivannan, P., Sankar, B., Kishorekumar, A., Sankari, S., Panneerselvam, R., 2007b. Paclobutrazol enhances photosynthesis and ajmalicine production in Catharanthus roseus. Process Biochem., 42(11):1566-1570.

[3]Abdullah, Z., Ahmad, R., 1980. Effect of ABA and GA3 on tuberization and some chemical constituents of potato. Plant Cell Physiol., 21(8):1343-1346.

[4]Arnon, D.I., 1949. Copper enzymes in isolated chloroplasts polyphenol oxidase in Beta vulgaris L. Plant Physiol., 24(1):1-15.

[5]Bailey, D.A., Miller, W.B., 1989. Whole plant response of Easter lilies to ancymidol and uniconazole. J. Am. Soc. Hort. Sci., 114(3):393-396.

[6]Berova, M., Zlatev, Z., 2000. Physiological response and yield of paclobutrazol treated tomato plants (Lycopersicon esculentum Mill.). Plant Growth Regul., 30(2):117-123.

[7]Borzenkova, R.A., Sobyanina, E.A., Pozdeeva, A.A., Yashkov, M.Y., 1998. Effect of phytohormones on starch-synthesizing capacity in growing potato tubers. Russ. J. Plant Physiol., 45(4):472-480.

[8]de Hertogh, A., le Nard, M., 1993. Physiological and Biochemical Aspects of Flower Bulbs. In: de Hertogh, A., le Nard, M. (Eds.), The Physiology of Flower Bulbs. Elsevier Science Publishers B.V., the Netherlands, p.53-69.

[9]Dragićević, I., Konjević, R., Vinterhalter, B., Vinterhalter, D., Nešković, M., 2008. The effects of IAA and tetcyclacis on tuberization in potato (Solanum tuberosum L.) shoot cultures in vitro. Plant Growth Regul., 54(3):189-193.

[10]Grossmann, K., 1990. Plant growth retardants as tools in physiological research. Physiol. Plant., 78(4):640-648.

[11]Hao, J.J., Yang, W.J., Han, H.F., 2001. Experimental Technology in Plant Physiology. Scientific Technology Publishing House of Liaoning Province, Shenyang, China, p.125-129 (in Chinese).

[12]Hussain, I., Chaudhry, Z., Muhammad, A., 2006. Effect of chlorocholine chloride, sucrose and BAP on in vitro tuberization in potato (Solanum tuberosum L. cv. Cardinal). Pak. J. Bot., 38(2):275-282.

[13]Jiao, J., Tsujita, M.J., Murr, D.P., 1986. Effects of paclobutrazol and A-Rest on growth, flowering, leaf carbohydrate and leaf senescence in ‘Nellie White’ Easter lily (Lilium longiflorum Thunb.). Sci. Hort., 30(1-2):135-141.

[14]Kim, K.J., Kim, K.S., 2005. Changes of endogenous growth substances during bulb maturation after flowering in Lilium oriental hybrid ‘Casa Blanca’. Acta Hort., 570:661-667.

[15]Kirillova, I.G., Evsyunina, A.S., Puzina, T.I., Korableva, N.P., 2003. Effects of ambiol and 2-chloroethylphosphonic acid on the content of phytohormones in potato leaves and tubers. Appl. Biochem. Microbiol., 39(2):210-214.

[16]Kozak, D., 2006. The effect of growth retardants on induction and development of Glorioa rothschildiana O′Brien tubers in vitro. Acta Hort., 570:345-349.

[17]Mares, D.J., Marschner, H., Krauss, A., 1981. Effect of gibberellic acid on growth and carbohydrate metabolism of developing tubers of potato (Solanum tuberosum L.). Physiol. Plant., 52(2):267-274.

[18]McCready, R.M., Guggolz, J., Silveira, V., Owens, H.S., 1950. Determination of starch and amylose in vegetables. Application to peas. Anal. Chem., 22(9):1156-1158.

[19]McWha, J.A., 1975. Changes in abscisic acid levels in developing grains of wheat (Triticum aestivum L.). J. Exp. Bot., 26(6):823-827.

[20]Menhenett, R., 1984. Comparison of a new triazole retardant paclobutrazol (PP333) with ancymidol, chlorphonium chloride, daminozide and piproctanyl bromide, on stem extension and inflorescence development in Chrysanthemum morifolium Ramat. Sci. Hort., 24(3-4):349-358.

[21]Miller, W.B., 1993. Lilium longiflorum. In: de Hertogh, A., le Nard, M. (Eds.), The Physiology of Flower Bulbs. Elsevier Science Publishers B.V., the Netherlands, p.391-422.

[22]Mobli, M., Baninasab, B., 2008. Effects of plant growth regulators on growth and carbohydrate accumulation in shoots and roots of two almond rootstock seedlings. Fruits, 63(6):363-370.

[23]Nojiri, H., Toyomasu, T., Yamane, H., Shibaoka, H., Murofushi, N., 1993. Qualitative and quantitative analysis of endogenous gibberellins in onion plants and their effects on bulb development. Biosci. Biotechnol. Biochem., 57(12):2031-2035.

[24]Qian, S.L., Yi, M.F., 2006. Analysis on the changes of endogenous hormones with gladiolus cormels during different growth and development stages. J. Agric. Univ. Hebei, 29(2):9-12.

[25]Quebedeaux, B., Sweetser, P.B., Rowell, J.C., 1976. Abscisic acid levels in soybean reproductive structures during development. Plant Physiol., 58(3):363-366.

[26]Saniewski, M., Okubo, H., Miyamoto, K., Ueda, J., 2005. Auxin induces growth of stem excised from growing shoot of cooled tulip bulbs. J. Fac. Agric. Kyushu Univ., 50(2):481-488.

[27]Sharma, N., Kaur, N., Gupta, A.K., 1998a. Effects of gibberellic acid and chlorocholine chloride on tuberization and growth of potato (Solanum tuberosum L.). J. Sci. Food Agric., 78(4):466-470.

[28]Sharma, N., Kaur, N., Gupta, A.K., 1998b. Effect of chlorocholine chloride sprays on the carbohydrate composition and activities of sucrose metabolising enzymes in potato (Solanum tuberosum L.). Plant Growth Regul., 26(2):97-103.

[29]Sladky, Z., Bartosova, L., 1990. In vitro induction of axillary potato microtubers and their sprouting after storage. Biol. Plant., 36:15-20.

[30]Tekalign, T., Hammes, P.S., 2005. Growth and biomass production in potato grown in the hot tropics as influenced by paclobutrazol. Plant Growth Regul., 45(1):37-46.

[31]Tezuka, T., Takahara, C., Yamamoto, Y., 1989. Aspects regarding the action of CCC in hollyhock plants. J. Exp. Bot., 40(6):689-692.

[32]Tsegaw, T., Hammes, S., Robbertse, J., 2005. Paclobutrazol-induced leaf, stem, and root anatomical modifications in potato. Hortscience, 40(5):1343-1346.

[33]Vreugdenhil, D., Struik, P.C., 1989. An integrated view of the hormonal regulation of tuber formation in potato (Solanum tuberosum). Physiol. Plant., 75(4):525-531.

[34]Wang, H.Q., Xiao, L.T., 2009. Effects of chlorocholine chloride on phytohormones and photosynthetic characteristics in potato (Solanum tuberosum L.). J. Plant Growth Regul., 28(1):21-27.

[35]Wang, H.Q., Li, H.S., Liu, F.L., Xiao, L.T., 2009. Chlorocholine chloride application effects on photosynthetic capacity and photoassimilates partitioning in potato (Solanum tuberosum L.). Sci. Hort., 119(2):113-116.

[36]Xu, X., van Lammeren, A.A.M., Vermeer, E., Vreugdenhil, D., 1998. The role of gibberellin, abscisic acid, and sucrose in the regulation of potato tuber formation in vitro. Plant Physiol., 117(2):575-584.

[37]Yang, J.C., Zhang, J.H., Wang, Z.Q., Xu, G.W., Zhu, Q.S., 2004. Activities of key enzymes in sucrose-to-starch conversion in wheat grains subjected to water deficit during grain Filling. Plant Physiol., 135(3):1621-1629.

[38]Yeshitela, T., Robbertse, P.J., Stassen, P.J.C., 2004. Paclobutrazol suppressed vegetative growth and improved yield as well as fruit quality of ‘Tommy Atkins’ mango (Mangifera indica) in Ethiopia. NZ J. Crop Hort. Sci., 32(3):281-293.

[39]Yim, K.O., Kwon, Y.W., Bayer, D.E., 1997. Growth responses and allocation of assimilates of rice seedlings by paclobutrazol and gibberellin treatment. J. Plant Growth Regul., 16(1):35-41.

[40]Ziv, M., 1990. The effect of growth retardants on shoot proliferation and morphologenesis in liquid cultured Gladiolus plants. Acta Hort., 280:207-214.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE