Full Text:   <3123>

CLC number: Q503

On-line Access: 2012-04-06

Received: 2011-08-08

Revision Accepted: 2011-10-27

Crosschecked: 2012-03-15

Cited: 0

Clicked: 5308

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
1. Reference List
Open peer comments

Journal of Zhejiang University SCIENCE B 2012 Vol.13 No.4 P.248-253

http://doi.org/10.1631/jzus.B1100254


Biotransformation of nitro-polycyclic aromatic compounds by vegetable and fruit cell extracts


Author(s):  Bo Xie, Jun Yang, Qing Yang

Affiliation(s):  School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, China; more

Corresponding email(s):   junyang@dlut.edu.cn, qingyang@dlut.edu.cn

Key Words:  Biotransformation, Nitro-polycyclic aromatic compounds, Plant cell extracts, Hydroxylamine, Amine


Bo Xie, Jun Yang, Qing Yang. Biotransformation of nitro-polycyclic aromatic compounds by vegetable and fruit cell extracts[J]. Journal of Zhejiang University Science B, 2012, 13(4): 248-253.

@article{title="Biotransformation of nitro-polycyclic aromatic compounds by vegetable and fruit cell extracts",
author="Bo Xie, Jun Yang, Qing Yang",
journal="Journal of Zhejiang University Science B",
volume="13",
number="4",
pages="248-253",
year="2012",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1100254"
}

%0 Journal Article
%T Biotransformation of nitro-polycyclic aromatic compounds by vegetable and fruit cell extracts
%A Bo Xie
%A Jun Yang
%A Qing Yang
%J Journal of Zhejiang University SCIENCE B
%V 13
%N 4
%P 248-253
%@ 1673-1581
%D 2012
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1100254

TY - JOUR
T1 - Biotransformation of nitro-polycyclic aromatic compounds by vegetable and fruit cell extracts
A1 - Bo Xie
A1 - Jun Yang
A1 - Qing Yang
J0 - Journal of Zhejiang University Science B
VL - 13
IS - 4
SP - 248
EP - 253
%@ 1673-1581
Y1 - 2012
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1100254


Abstract: 
Extracts from various vegetables and fruits were investigated for their abilities to reduce nitro-polycyclic aromatic hydrocarbons (NPAHs). The extracts from grape and onion exhibited an interesting selectivity, yielding corresponding amine%29&ck%5B%5D=abstract&ck%5B%5D=keyword'>hydroxylamines or amines as major products under mild conditions of 30 °C and pH 7.0. Grape extracts reduced the 4-nitro-1,8-naphthalic anhydride with the highest conversion rate (>99%) and the highest ratio of amine%29&ck%5B%5D=abstract&ck%5B%5D=keyword'>hydroxylamine to amine (95:5). In contrast, the onion extracts reduced 4-nitro-1,8-naphthalic anhydride with a conversion rate of 94% and a ratio of amine%29&ck%5B%5D=abstract&ck%5B%5D=keyword'>hydroxylamine to amine of 8:92. The thiol-reducing agent, β-mercaptoethanol, and metal cations, Ca2+ and Mg2+, greatly increased the reductive efficiency. This work provides an alternative strategy for biotransformation of nitro-polycyclic compounds.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Abhilash, P.C., Jamil, S., Singh, N., 2009. Transgenic plants for enhanced biodegradation and phytoremediation of organic xenobiotics. Biotechnol. Adv., 27(4):474-488.

[2]Castelli, F., Micieli, D., Ottimo, S., Minniti, Z., Sarpietro, M.G., Librando, V., 2008. Absorption of nitro-polycyclic aromatic hydrocarbons by biomembrane models: effect of the medium lipophilicity. Chemosphere, 73(7):1108-1114.

[3]Dai, R., Chen, J., Lin, J., Xiao, S., Chen, S., Deng, Y., 2009. Reduction of nitro phenols using nitroreductase from E. coli in the presence of NADH. J. Hazard. Mater., 170(1):141-143.

[4]Doran, P.M., 2009. Application of plant tissue cultures in phytoremediation research: incentives and limitations. Biotechnol. Bioeng., 103(1):60-76.

[5]Dua, M., Singh, A., Sethunathan, N., Johri, A.K., 2002. Biotechnology and bioremediation: successes and limitations. Appl. Microbiol. Biotechnol., 59(2-3):143-152.

[6]Hallas, L.E., Alexander, M., 1983. Microbial transformation of nitroaromatic compounds in sewage effluent. Appl. Environ. Microbiol., 45(4):1234-1241.

[7]Haritash, A.K., Kaushik, C.P., 2009. Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review. J. Hazard. Mater., 169(1-3):1-15.

[8]Laine, D.F., Cheng, I.F., 2007. The destruction of organic pollutants under mild reaction conditions: a review. Microchem. J., 85(2):183-193.

[9]Lewis, N.A., Ray, A.M., 1984. The effect of anions on redox reactions. Inorg. Chem., 23(22):3649-3653.

[10]Macek, T., Mackova, M., Kas, J., 2000. Exploitation of plants for the removal of organics in environmental remediation. Biotechnol. Adv., 18(1):23-34.

[11]Marvin-Sikkema, F.D., de Bont, J.A., 1994. Degradation of nitroaromatic compounds by microorganisms. Appl. Microbiol. Biotechnol., 42(4):499-507.

[12]Matsuda, T., Yamanaka, R., Nakamura, K., 2009. Recent progress in biocatalysis for asymmetric oxidation and reduction. Tetrahedron: Asymmetry, 20(5):513-557.

[13]Medina, V.F., Larson, S.L., Agwaramgbo, L., Perez, W., Escalon, L., 2004. Treatment of trinitrotoluene by crude plant extracts. Chemosphere, 55(5):725-732.

[14]Muck, A., Kubát, P., Oliveira, A., Ferreira, L.F.V., Cvacka, J., Civis, S., Zelinger, Z., Barek, J., Zima, J., 2002. Photodegradation of 1-nitropyrene in solution and in the adsorbed state. J. Hazard. Mater., 95(1-2):175-184.

[15]Parrish, Z.D., Banks, M.K., Schwab, A.P., 2004. Effectiveness of phytoremediation as a secondary treatment for polycyclic aromatic hydrocarbons (PAHs) in composted soil. Int. J. Phytorem., 6(2):119-137.

[16]Ramos, J.L., González-Pérez, M.M., Caballero, A., van Dillewijn, P., 2005. Bioremediation of polynitrated aromatic compounds: plants and microbes put up a fight. Curr. Opin. Biotechnol., 16(3):275-281.

[17]Roldán, M.D., Pérez-Reinado, E., Castillo, F., Moreno-Vivián, C., 2008. Reduction of polynitroaromatic compounds: the bacterial nitroreductases. FEMS Microbiol. Rev., 32(3):474-500.

[18]Schackmann, A., Muller, R., 1991. Reduction of nitroaromatic compounds by different Pseudomonas species under aerobic conditions. Appl. Microbiol. Biotechnol., 34(6):809-813.

[19]Shen, J., Zhang, J., Zuo, Y., Wang, L., Sun, X., Li, J., Han, W., He, R., 2009. Biodegradation of 2,4,6-trinitrophenol by Rhodococcus sp. isolated from a picric acid-contaminated soil. J. Hazard. Mater., 163(2-3):1199-1206.

[20]Spain, J.C., 1995. Biodegradation of nitroaromatic compounds. Annu. Rev. Microbiol., 49(1):523-555.

[21]Teramoto, H., Tanaka, H., Wariishi, H., 2004. Degradation of 4-nitrophenol by the lignin-degrading basidiomycete Phanerochaete chrysosporium. Appl. Microbiol. Biotechnol., 66(3):312-317.

[22]Tocher, J.H., 1997. Reductive activation of nitroheterocyclic compounds. Gen. Pharmacol., 28(4):485-487.

[23]van Aken, B., 2009. Transgenic plants for enhanced phytoremediation of toxic explosives. Curr. Opin. Biotechnol., 20(2):231-236.

[24]Wu, Y., Luo, Y., Zou, D., Ni, J., Liu, W., Teng, Y., Li, Z., 2008. Bioremediation of polycyclic aromatic hydrocarbons contaminated soil with Monilinia sp.: degradation and microbial community analysis. Biodegradation, 19(2):247-257.

[25]Yoon, J.M., Aken, B.V., Schnoor, J.L., 2006. Leaching of contaminated leaves following uptake and phytoremediation of RDX, HMX, and TNT by poplar. Int. J. Phytorem., 8(1):81-94.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE