CLC number: R917
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2013-06-17
Cited: 3
Clicked: 5482
Jie Zhou, Qian Liu, Guang-jun Fu, Zhen-zhong Zhang. Separation of mandelic acid and its derivatives with new immobilized cellulose chiral stationary phase[J]. Journal of Zhejiang University Science B, 2013, 14(7): 615-620.
@article{title="Separation of mandelic acid and its derivatives with new immobilized cellulose chiral stationary phase",
author="Jie Zhou, Qian Liu, Guang-jun Fu, Zhen-zhong Zhang",
journal="Journal of Zhejiang University Science B",
volume="14",
number="7",
pages="615-620",
year="2013",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1200361"
}
%0 Journal Article
%T Separation of mandelic acid and its derivatives with new immobilized cellulose chiral stationary phase
%A Jie Zhou
%A Qian Liu
%A Guang-jun Fu
%A Zhen-zhong Zhang
%J Journal of Zhejiang University SCIENCE B
%V 14
%N 7
%P 615-620
%@ 1673-1581
%D 2013
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1200361
TY - JOUR
T1 - Separation of mandelic acid and its derivatives with new immobilized cellulose chiral stationary phase
A1 - Jie Zhou
A1 - Qian Liu
A1 - Guang-jun Fu
A1 - Zhen-zhong Zhang
J0 - Journal of Zhejiang University Science B
VL - 14
IS - 7
SP - 615
EP - 620
%@ 1673-1581
Y1 - 2013
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1200361
Abstract: A new liquid chromatographic method has been developed for the chiral separation of the enantiomers of mandelic acid and their derivatives 2-chloromandelic acid, 4-hydroxymandelic acid, 4-methoxymandelic acid, and 3,4,5-trismethoxymandelic acid. The enantiomers were separated by a CHIRALPAK®; IC (250 mm×4.6 mm, 5 μm). mandelic acid, 4-methoxymandelic acid, and 3,4,5-trismethoxymandelic acid were baseline resolved (resolution factor (RS)=2.21, RS=2.14, and RS=3.70, respectively). In contrast, the enantioselectivities between CHIRALPAK®; IC and 2-chloromandelic acid and 4-hydroxymandelic acid investigated were low. By comparing the chromatographs of mandelic acid enantiomers and mandelic acid spiked with (R)-mandelic acid, it was determined that the first effluent was (R)-mandelic acid.
[1]Davulcu, A.H., McLeod, D.D., Li, J., Katipally, K., Littke, A., Doubleday, W., Xu, Z., McConlogue, C.W., Lai, C.J., Gleeson, M., et al., 2009. Process research and development for a tetrazole-based growth hormone secretagogue (GHS) pharmaceutical development candidate. J. Org. Chem., 74(11):4068-4079.
[2]Debowski, J., Jurczak, J., Sybilska, D., 1983. Resolution of some chiral mandelic acid derivatives into enantiomers by reversed-phase high-performance liquid chromatography via α- and β-cyclodextrin inclusion complexes. J. Chromatogr. A, 282:83-88.
[3]Ferretti, R., Gallinella, B., Torre, F.L., Zanitti, L., Turchetto, L., Mosca, A., Cirilli, R., 2009. Direct high-performance liquid chromatography enantioseparation of terazosin on an immobilised polysaccharide-based chiral stationary phase under polar organic and reversed-phase conditions. J. Chromatogr. A, 1216(28):5385-5390.
[4]Grover, P.T., Bhongle, N.N., Wald, S.A., Senanayake, C.H., 2000. Chiral mandelic acid template provides a highly practical solution for (S)-oxybutynin synthesis. J. Org. Chem., 65(19):6283-6287.
[5]Guo, H., Kim, J., Chang, S., Kim, W., 2009. Chiral recognition of mandelic acid l-phenylalanine-modified sensor using quartz crystal microbalance. Biosens. Bioelectron., 24(9):2931-2934.
[6]Hansen, M.M., Borders, S.S.K., Clayton, M.T., Heath, P.C., Kolis, S.P., Larsen, S.D., Linder, R.J., Reutzel-Edens, S.M., Smith, J.C., Tameze, S.L., et al., 2009. Development of a practical synthesis of an aminoindanol-derived M1 agonist. Org. Process Res. Dev., 13(2):198-208.
[7]Huang, H., Xu, J., 2006. Preparation of (S)-mandelic acid from racemate using growing cells of Pseudomonas putida ECU1009 with (R)-mandelate degradation activity. Biochem. Eng. J., 30(1):11-15.
[8]Mishra, M.K., Kumaraguru, T., Sheelu, G., Fadnavis, N.W., 2009. Lipase activity of Lecitase® Ultra: characterization and applications in enantioselective reactions. Tetrahedron: Asymmetry, 20(24):2854-2860.
[9]Munro, J.S., Walker, T.A., 2001. Bupropion hydrochloride: the development of a chiral separation using an ovomucoid column. J. Chromatogr. A, 913(1-2):275-282.
[10]Schramm, H., Christoffers, J., 2009. Synthesis, resolution and absolute configuration of 4-amino-3-phenylpiperidine. Tetrahedron: Asymmetry, 20(23):2724-2727.
[11]Takahashi, E., Nakamichi, K., Furui, M., Mori, T., 1995. R-(−)-mandelic acid production from racemic mandelic acids by Pseudomonas polycolor with asymmetric degrading activity. J. Ferm. Bioeng., 79(5):439-442.
[12]Thunberg, L., Hashemi, J., Andersson, S., 2008. Comparative study of coated and immobilized polysaccharide-based chiral stationary phases and their applicability in the resolution of enantiomers. J. Chromatogr. B, 875(1):72-80.
[13]Whitesell, J.K., Reynolds, D., 1983. Resolution of chiral alcohols with mandelic acid. J. Org. Chem., 48(20):3548-3551.
[14]Zhang, T., Nguyen, D., Franco, P., Isobe, Y., Michishita, T., Murakami, T., 2008. Cellulose tris(3,5-dichlorophenylcarbamate) immobilised on silica: a novel chiral stationary phase for resolution of enantiomers. J. Pharm. Biomed. Anal., 46(5):882-891.
[15]Zhang, T., Nguyen, D., Franco, P., 2010. Reversed-phase screening strategies for liquid chromatography on polysaccharide-derived chiral stationary phases. J. Chromatogr. A, 1217(7):1048-1055.
[16]Zhou, J., Liu, Q., Su, N., Fu, G., Pei, W., Zhang, Z., 2012. Separation of betaxolol hydrochloride with new bonded cellulose chiral stationary phase and determination of the enantiomers in plasma by HPLC. J. Liq. Chromatogr. Relat. Technol., 35(13):1767-1778.
Open peer comments: Debate/Discuss/Question/Opinion
<1>