CLC number: R777.2; Q813
On-line Access: 2015-11-04
Received: 2015-05-11
Revision Accepted: 2015-09-30
Crosschecked: 2015-10-20
Cited: 0
Clicked: 4574
Chen Xie, Xiu-yi Li, Hong-guang Cui. Potential candidate cells for constructing tissue-engineered lacrimal duct epithelium: a histological and cytological study in rabbits[J]. Journal of Zhejiang University Science B, 2015, 16(11): 904-913.
@article{title="Potential candidate cells for constructing tissue-engineered lacrimal duct epithelium: a histological and cytological study in rabbits",
author="Chen Xie, Xiu-yi Li, Hong-guang Cui",
journal="Journal of Zhejiang University Science B",
volume="16",
number="11",
pages="904-913",
year="2015",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1500113"
}
%0 Journal Article
%T Potential candidate cells for constructing tissue-engineered lacrimal duct epithelium: a histological and cytological study in rabbits
%A Chen Xie
%A Xiu-yi Li
%A Hong-guang Cui
%J Journal of Zhejiang University SCIENCE B
%V 16
%N 11
%P 904-913
%@ 1673-1581
%D 2015
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1500113
TY - JOUR
T1 - Potential candidate cells for constructing tissue-engineered lacrimal duct epithelium: a histological and cytological study in rabbits
A1 - Chen Xie
A1 - Xiu-yi Li
A1 - Hong-guang Cui
J0 - Journal of Zhejiang University Science B
VL - 16
IS - 11
SP - 904
EP - 913
%@ 1673-1581
Y1 - 2015
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1500113
Abstract: Objective: Injury and deficiency of the lacrimal duct epithelium (LDE) can lead to a variety of lacrimal diseases. The purpose of this study was to characterize potential candidate cells for constructing a tissue-engineered LDE. Methods: Different areas of the conjunctiva and lacrimal duct tissue were removed from male adult New Zealand white rabbits for histological evaluation. Hematoxylin and eosin staining and immunohistochemical staining of cytokeratin AE1+AE3, cytokeratin 4, Ki-67, and MUC5AC were observed by light microscopy. The surface morphologies of different epithelial tissues and cellular structures were examined using field-emission scanning electron microscopy and transmission electron microscopy. Epithelial cells were isolated from tissues and identified by specific markers. In vitro, proliferative ability and Western blot analyses of the proliferating cell nuclear antigen (PCNA) of different epithelial cells cultured in identical environments were investigated and compared. Results: Histologically, the epithelial specific markers, cytokeratin AE1+AE3 and cytokeratin 4, were expressed in the conjunctiva epithelium and the LDE. Notably, highly proliferative cells stained with Ki-67 were concentrated under the epithelium in a dome structure of the posterior palpebral conjunctiva. Differentiated goblet cells were also found to a lesser extent in this region. Primary palpebral and fornical conjunctival epithelial cells (PFCECs), bulbar conjunctival epithelial cells (BCECs), and lacrimal duct epithelial cells (LDECs) were successfully separated from tissues. In vitro, rabbit PFCECs and LDECs grew faster and expressed more PCNA than BCECs. Conclusions: PFCECs are anatomically similar to LDECs. They also have similar morphological characteristics, immune phenotypes, and proliferation features. PFCECs are therefore potential candidate cells to replace LDECs in tissue engineering to treat lacrimal duct diseases.
[1]Ang, L.P., Tanioka, H., Kawasaki, S., et al., 2010. Cultivated human conjunctival epithelial transplantation for total limbal stem cell deficiency. Invest. Ophthalmol. Vis. Sci., 51(2):758-764.
[2]Avgitidou, G., Koch, K.R., Cursiefen, C., et al., 2015. Current aspects of eyelid, lacrimal and orbital surgery in childhood. Der Ophthalmologe, 112(2):102-109 (in German).
[3]Baran, F., Kelly, J.P., Finn, L.S., et al., 2014. Evaluation and treatment of failed nasolacrimal duct probing in Down syndrome. J. AAPOS, 18(3):226-231.
[4]Bonilha, V.L., Rayborn, M.E., Shadrach, K., et al., 2006. Characterization of semenogelin proteins in the human retina. Exp. Eye Res., 83(1):120-127.
[5]Cattoretti, G., Orazi, A., Gerdes, J., 1993. Proliferating normal bone marrow cells do stain for Ki-67 antigen. Br. J. Haematol., 85(4):835-836.
[6]Cooper, D., Schermer, A., Pruss, R., et al., 1984. The use of aIF, AE1, and AE3 monoclonal antibodies for the identification and classification of mammalian epithelial keratins. Differentiation, 28(1):30-35.
[7]Doughty, M.J., 2013. Assessment of goblet cell orifice distribution across the rabbit bulbar conjunctiva based on numerical density and nearest neighbors analysis. Curr. Eye Res., 38(2):237-251.
[8]Gipson, I.K., 2004. Distribution of mucins at the ocular surface. Exp. Eye Res., 78(3):379-388.
[9]Gipson, I.K., Tisdale, A.S., 1997. Visualization of conjunctival goblet cell actin cytoskeleton and mucin content in tissue whole mounts. Exp. Eye Res., 65(3):407-415.
[10]Goldstein, S.M., Katowitz, J.A., Syed, N.A., 2006. The histopathologic effects of balloon dacryoplasty on the rabbit nasolacrimal duct. J. AAPOS, 10(4):333-335.
[11]Inatomi, T., Spurr-Michaud, S., Tisdale, A.S., et al., 1996. Expression of secretory mucin genes by human conjunctival epithelia. Invest. Ophthalmol. Vis. Sci., 37(8):1684-1692.
[12]Jäger, K., Wu, G., Sel, S., et al., 2007. MUC16 in the lacrimal apparatus. Histochem. Cell Biol., 127(4):433-438.
[13]Kam, J.K., Cheng, N.M., Sarossy, M., et al., 2014. Nasolacrimal duct screening to minimize post-cataract surgery endophthalmitis. Clin. Exp. Ophthalmol., 42(5):447-451.
[14]Kasper, M., 1991. Heterogeneity in the immunolocalization of cytokeratin specific monoclonal antibodies in the rat eye: evaluation of unusual epithelial tissue entities. Histochemistry, 95(6):613-620.
[15]Langer, R., Vacanti, J.P., 1993. Tissue engineering. Science, 260(5110):920-926.
[16]Lopez, P.F., Beldavs, R.A., al-Ghamdi, S., et al., 1993. Pneumococcal endophthalmitis associated with nasolacrimal obstruction. Am. J. Ophthalmol., 116(1):56-62.
[17]Mukherjee, B., Dhobekar, M., 2013. Traumatic nasolacrimal duct obstruction: clinical profile, management, and outcome. Eur. J. Ophthalmol., 23(5):615-622.
[18]Nakamura, T., Kinoshita, S., 2003. Ocular surface reconstruction using cultivated mucosal epithelial stem cells. Cornea, 22(7):S75-S80.
[19]Nakamura, T., Endo, K., Cooper, L.J., et al., 2003. The successful culture and autologous transplantation of rabbit oral mucosal epithelial cells on amniotic membrane. Invest. Ophthalmol. Vis. Sci., 44(1):106-116.
[20]Paulsen, F.P., Corfield, A.P., Hinz, M., et al., 2003. Characterization of mucins in human lacrimal sac and nasolacrimal duct. Invest. Ophthalmol. Vis. Sci., 44(5):1807-1813.
[21]Pellegrini, G., Traverso, C.E., Franzi, A.T., et al., 1997. Long-term restoration of damaged corneal surfaces with autologous cultivated corneal epithelium. Lancet, 349(9057):990-993.
[22]Prabhasawat, P., Tseng, S.C., 1998. Frequent association of delayed tear clearance in ocular irritation. Br. J. Ophthalmol., 82(6):666-675.
[23]Ricardo, J.R., Cristovam, P.C., Filho, P.A., et al., 2013. Transplantation of conjunctival epithelial cells cultivated ex vivo in patients with total limbal stem cell deficiency. Cornea, 32(3):221-228.
[24]Risse Marsh, B.C., Massaro-Giordano, M., Marshall, C.M., et al., 2002. Initiation and characterization of keratinocyte cultures from biopsies of normal human conjunctiva. Exp. Eye Res., 74(1):61-69.
[25]Shatos, M.A., Rios, J.D., Horikawa, Y., et al., 2003. Isolation and characterization of cultured human conjunctival goblet cells. Invest. Ophthalmol. Vis. Sci., 44(6):2477-2486.
[26]Siew, S., Goldstein, M.L., 1981. Scanning electron microscopy of mucosal biopsies of the human upper gastrointestinal tract. Scan. Electron. Microsc., 4:173-181.
[27]Skrzypek, T., Valverde Piedra, J.L., Skrzypek, H., et al., 2005. Light and scanning electron microscopy evaluation of the postnatal small intestinal mucosa development in pigs. J. Physiol. Pharmacol., 56(Suppl. 3):71-87.
[28]Su, L., Cui, H., Xu, C., et al., 2011. Putative rabbit conjunctival epithelial stem/progenitor cells preferentially reside in palpebral conjunctiva. Curr. Eye Res., 36(9):797-803.
[29]Takahashi, Y., Nakamura, Y., Kakizaki, H., 2013. Dacryoendoscopic findings in the lacrimal passage in failed dacryocystorhinostomy. Ophthal. Plast. Reconstr. Surg., 29(5):373-375.
[30]Takahashi, Y., Nakamura, Y., Kakizaki, H., 2015. Eight-flap anastomosis in external dacryocystorhinostomy. Br. J. Ophthalmol., 99(11):1527-1530.
[31]Tanioka, H., Kawasaki, S., Yamasaki, K., et al., 2006. Establishment of a cultivated human conjunctival epithelium as an alternative tissue source for autologous corneal epithelial transplantation. Invest. Ophthalmol. Vis. Sci., 47(9):3820-3827.
[32]Wei, Z.G., Wu, R.L., Lavker, R.M., et al., 1993. In vitro growth and differentiation of rabbit bulbar, fornix, and palpebral conjunctival epithelia. Implications on conjunctival epithelial transdifferentiation and stem cells. Invest. Ophthalmol. Vis. Sci., 34(5):1814-1828.
[33]Wei, Z.G., Sun, T.T., Lavker, R.M., 1996. Rabbit conjunctival and corneal epithelial cells belong to two separate lineages. Invest. Ophthalmol. Vis. Sci., 37(4):523-533.
[34]Wolosin, J.M., Budak, M.T., Akinci, M.A., 2004. Ocular surface epithelial and stem cell development. Int. J. Dev. Biol., 48(8-9):981-991.
[35]Xie, C., Li, X., Tong, J., et al., 2014. Effects of white light-emitting diode (LED) light exposure with different correlated color temperatures (CCTs) on human lens epithelial cells in culture. Photochem. Photobiol., 90(4):853-859.
Open peer comments: Debate/Discuss/Question/Opinion
<1>