Full Text:   <2648>

Summary:  <1624>

CLC number: R96

On-line Access: 2017-06-05

Received: 2016-08-23

Revision Accepted: 2016-12-04

Crosschecked: 2017-05-10

Cited: 0

Clicked: 4385

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Lan-lan Wan

http://orcid.org/0000-0002-3728-2051

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2017 Vol.18 No.6 P.522-531

http://doi.org/10.1631/jzus.B1600369


Anti-hepatocarcinoma activity of TT-1, an analog of melittin, combined with interferon-α via promoting the interaction of NKG2D and MICA


Author(s):  Lan-lan Wan, Da-qi Zhang, Jin-nan Zhang, Li-qun Ren

Affiliation(s):  Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China; more

Corresponding email(s):   renlq_ren@sina.com

Key Words:  TT-1, Interferon-α, (IFN-α, ), Natural killer (NK) cells, Hepatocarcinoma, Immunotherapy


Lan-lan Wan, Da-qi Zhang, Jin-nan Zhang, Li-qun Ren. Anti-hepatocarcinoma activity of TT-1, an analog of melittin, combined with interferon-α via promoting the interaction of NKG2D and MICA[J]. Journal of Zhejiang University Science B, 2017, 18(6): 522-531.

@article{title="Anti-hepatocarcinoma activity of TT-1, an analog of melittin, combined with interferon-α via promoting the interaction of NKG2D and MICA",
author="Lan-lan Wan, Da-qi Zhang, Jin-nan Zhang, Li-qun Ren",
journal="Journal of Zhejiang University Science B",
volume="18",
number="6",
pages="522-531",
year="2017",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1600369"
}

%0 Journal Article
%T Anti-hepatocarcinoma activity of TT-1, an analog of melittin, combined with interferon-α via promoting the interaction of NKG2D and MICA
%A Lan-lan Wan
%A Da-qi Zhang
%A Jin-nan Zhang
%A Li-qun Ren
%J Journal of Zhejiang University SCIENCE B
%V 18
%N 6
%P 522-531
%@ 1673-1581
%D 2017
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1600369

TY - JOUR
T1 - Anti-hepatocarcinoma activity of TT-1, an analog of melittin, combined with interferon-α via promoting the interaction of NKG2D and MICA
A1 - Lan-lan Wan
A1 - Da-qi Zhang
A1 - Jin-nan Zhang
A1 - Li-qun Ren
J0 - Journal of Zhejiang University Science B
VL - 18
IS - 6
SP - 522
EP - 531
%@ 1673-1581
Y1 - 2017
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1600369


Abstract: 
hepatocarcinoma is one of the malignant cancers with significant morbidity and mortality. immunotherapy has emerged in clinical treatment, owing to the limitation and severe side effects of chemotherapy. In the immune system, natural killer (NK) cells are important effectors required to eliminate malignant tumor cells without the limitation of major histocompatibility complex (MHC) molecule issues. Hence, treatment which could stimulate NK cells is of great interest. Here, we investigated the efficacy of the combined therapy of TT-1 (a mutant of melittin) and interferon-α; (IFN-α;) on NK cells and human liver cancer HepG-2/Huh7 cells in vitro and in vivo, as well as the mechanism involved. The combination therapy significantly inhibited the growth of HepG-2/Huh7 cells in vivo, but this effect was impaired after depleting NK cells. TT-1 not only up-regulated MHC class I-related chain molecules A (MICA) expression, but also prevented the secretion of soluble MICA (sMICA). Both the mRNA and protein of a disintegrin and metallopeptidase 10 (ADAM 10) in HepG-2/Huh7 cells were decreased after TT-1 treatment. The combined therapy of TT-1 and IFN-α could suppress the growth of HepG-2/Huh7 xenografted tumor effectively via promoting the interaction of NK group 2, member D (NKG2D) and MICA, indicating that TT-1+IFN-α would be a potential approach in treating liver cancer.

联合使用IFN-α和TT-1通过增强NKG2D和MICA的相互作用达到抗肝癌效果的研究

目的:评估干扰素α(IFN-α)和TT-1(一种蜂毒肽的类似物)联合用药的抗肿瘤效果,并初步研究联合用药的抗肿瘤及免疫调节机制。
创新点:为了增强蜂毒肽的抗肿瘤效果,本课题组在其基础上进行改造,合成了一种新的化合物TT-1。该研究第一次将蜂毒肽类似物和免疫细胞因子IFN-α联合使用,并通过实验证实联合用药可以通过激活免疫调节来增强TT-1的抗肿瘤效果。
方法:首先通过MTT实验验证TT-1对HepG-2/Huh7细胞的增殖抑制作用。接着建立HepG-2/Huh7小鼠移植瘤模型,考察TT-1+IFN-α的体内抗肿瘤效果;使用anti-asialo GM-1抗体消除自然杀伤(NK)细胞,验证NK细胞在联合用药中的关键作用。使用流式细胞术和酶联免疫吸附法(ELISA)验证TT-1对HepG-2/Huh7细胞MHC I链相关分子A(MICA)表达的影响,并用实时聚合酶联反应(RT-PCR)和蛋白质印迹(Western blot)对其机制进行探究;通过细胞毒性实验考察TT-1+IFN-α是否可以增强NK细胞对HepG-2/ Huh7细胞的特异性杀伤作用。最后使用免疫组化的方法考察TT-1+IFN-α联合用药对肿瘤组织中MICA和NKG2D的表达量的影响。
结论:MTT实验表明TT-1可以在体外有效地抑制HepG-2/Huh7细胞的增殖。小鼠移植瘤模型实验结果显示TT-1+IFN-α联合用药比TT-1单独给药更能有效地抑制HepG-2/Huh7移植瘤的生长,但是在消除NK细胞之后该效应明显减弱,说明TT-1+IFN-α的抗肿瘤效应是通过NK细胞特异性介导的。TT-1不仅可以上调肿瘤细胞表面MICA的表达量,而且可以减少可溶性MICA的分泌;进一步研究表明,TT-1通过抑制去整合素金属蛋白酶10(ADAM 10)的表达来阻止MICA从肿瘤细胞表面脱落。细胞毒性实验表明,TT-1+IFN-α可以显著增强NK细胞对HepG-2/Huh7细胞的杀伤作用。免疫组化实验结果显示,TT-1+IFN-α联合用药可以明显增加肿瘤组织中肿瘤细胞表面MICA和NK细胞NKG2D的表达量。综上所述,TT-1+IFN-α联合用药可以通过增强MICA和NKG2D的相互作用达到显著的抗肿瘤效果。

关键词:TT-1;干扰素α;自然杀伤细胞;肝癌;免疫治疗

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Boige, V., Taïeb, J., Hebbar, M., et al., 2006. Irinotecan as first-line chemotherapy in patients with advanced hepatocellular carcinoma: a multicenter phase II study with dose adjustment according to baseline serum bilirubin level. Eur. J. Cancer, 42(4):456-459.

[2]Brown, C.K., Kirkwood, J.M., 2003. Medical management of melanoma. Surg. Clin. North Am., 83(2):283-322.

[3]Cerwenka, A., Baron, J.L., Lanier, L.L., 2001. Ectopic expression of retinoic acid early inducible-1 gene (RAE-1) permits natural killer cell-mediated rejection of a MHC class I-bearing tumor in vivo. Proc. Natl. Acad. Sci. USA, 98(20):11521-11526.

[4]Dusheiko, G.M., Hobbs, K.E., Dick, R., et al., 1992. Treatment of small hepatocellular carcinomas. Lancet, 340(8814): 285-288.

[5]Floros, T., Tarhini, A.A., 2015. Anticancer cytokines: biology and clinical effects of IFN-α2, IL-2, IL-15, IL-21, and IL-12. Semin. Oncol., 42(4):539-548.

[6]Groh, V., Wu, J., Yee, C., et al., 2002. Tumour-derived soluble MIC ligands impair expression of NKG2D and T-cell activation. Nature, 419(6908):734-738.

[7]Guan, Z., Wang, Y., Maoleekoonpairoj, S., et al., 2003. Prospective randomized phase II study of gemcitabine at standard or fixed dose rate schedule in unresectable hepatocellular carcinoma. Br. J. Cancer, 89(10):1865-1869.

[8]Habu, S., Fukui, H., Shimamura, K., et al., 1981. In vivo effects of anti-asialo GM1. I. Reduction of NK activity and enhancement of transplanted tumor growth in nude mice. J. Immunol., 127(1):34-38.

[9]Hebbar, M., Ernst, O., Cattan, S., et al., 2006. Phase II trial of docetaxel therapy in patients with advanced hepatocellular carcinoma. Oncology, 70(2):154-158.

[10]Hung, H., 2005. Treatment modalities for hepatocellular carcinoma. Curr. Cancer Drug Targets, 5(2):131-138.

[11]Lee, W.P., Tai, D.I., Tsai, S.L., et al., 2003. Adenovirus type 5 E1A sensitizes hepatocellular carcinoma cells to gemcitabine. Cancer Res., 63(19):6229-6236.

[12]Leung, H.W., Yang, W.H., Lai, M.Y., et al., 2007. Inhibition of 12-lipoxygenase during baicalein-induced human lung non-small carcinoma H460 cell apoptosis. Food Chem. Toxicol., 45(3):403-411.

[13]Liu, Y., Yue, H., Xu, S., et al., 2015. First-line gemcitabine and oxaliplatin (GEMOX) plus sorafenib, followed by sorafenib as maintenance therapy, for patients with advanced hepatocellular carcinoma. Int. J. Clin. Oncol., 20(5):952-959.

[14]Liu, Y., Li, Y., Wang, R., et al., 2016. MiR-130a-3p regulates cell migration and invasion via inhibition of Smad4 in gemcitabine resistant hepatoma cells. J. Exp. Clin. Cancer Res., 35:19.

[15]Morisaki, T., Onishi, H., Koya, N., et al., 2011. Combinatorial cytotoxicity of gemcitabine and cytokine-activated killer cells in hepatocellular carcinoma via the NKG2D-MICA/B system. Anticancer Res., 31(7):2505-2510.

[16]Mundy-Bosse, B.L., Lesinski, G.B., Jaime-Ramirez, A.C., et al., 2011. Myeloid-derived suppressor cell inhibition of the IFN response in tumor-bearing mice. Cancer Res., 71(15):5101-5110.

[17]Oršolić, N., 2012. Bee venom in cancer therapy. Cancer Metastasis Rev., 31(1-2):173-194.

[18]Parlato, S., Santini, S.M., Lapenta, C., et al., 2001. Expression of CCR-7, MIP-3β, and Th-1 chemokines in type I IFN-induced monocyte-derived dendritic cells: importance for the rapid acquisition of potent migratory and functional activities. Blood, 98(10):3022-3029.

[19]Reiss, K., Ludwig, A., Saftig, P., 2006. Breaking up the tie: disintegrin-like metalloproteinases as regulators of cell migration in inflammation and invasion. Pharmacol. Ther., 111(3):985-1006.

[20]Salih, H.R., Rammensee, H.G., Steinle, A., 2002. Cutting edge: down-regulation of MICA on human tumors by proteolytic shedding. J. Immunol., 169(8):4098-4102.

[21]Sommer, A., Fries, A., Cornelsen, I., et al., 2012. Melittin modulates keratinocyte function through P2 receptor-dependent ADAM activation. J. Biol. Chem., 287(28): 23678-23689.

[22]Son, D.J., Lee, J.W., Lee, Y.H., et al., 2007. Therapeutic application of anti-arthritis, pain-releasing, and anticancer effects of bee venom and its constituent compounds. Pharmacol. Ther., 115(2):246-270.

[23]Taïeb, J., Bonyhay, L., Golli, L., et al., 2003. Gemcitabine plus oxaliplatin for patients with advanced hepatocellular carcinoma using two different schedules. Cancer, 98(12): 2664-2670.

[24]Thompson, C.B., Allison, J.P., 1997. The emerging role of CTLA-4 as an immune attenuator. Immunity, 7(4):445-450.

[25]Ueda, K., Akiba, J., Ogasawara, S., et al., 2016. Growth inhibitory effect of an injectable hyaluronic acid-tyramine hydrogels incorporating human natural interferon-α and sorafenib on renal cell carcinoma cells. Acta Biomater., 29:103-111.

[26]Waldhauer, I., Steinle, A., 2006. Proteolytic release of soluble UL16-binding protein 2 from tumor cells. Cancer Res., 66(5):2520-2526.

[27]Waldhauer, I., Goehlsdorf, D., Gieseke, F., et al., 2008. Tumor-associated MICA is shed by ADAM proteases. Cancer Res., 68(15):6368-6376.

[28]Wang, T., Sun, F., Xie, W., et al., 2016. A bispecific protein rG7S-MICA recruits natural killer cells and enhances NKG2D-mediated immunosurveillance against hepatocellular carcinoma. Cancer Lett., 372(2):166-178.

[29]Wu, J.D., Higgins, L.M., Steinle, A., et al., 2004. Prevalent expression of the immunostimulatory MHC class I chain-related molecule is counteracted by shedding in prostate cancer. J. Clin. Invest., 114(4):560-568.

[30]Wu, J.D., Atteridge, C.L., Wang, X., et al., 2009. Obstructing shedding of the immunostimulatory MHC class I chain-related gene B prevents tumor formation. Clin. Cancer Res., 15(2):632-640.

[31]Xie, W., Liu, F., Wang, Y., et al., 2016. VEGFR2 targeted antibody fused with MICA stimulates NKG2D mediated immunosurveillance and exhibits potent anti-tumor activity against breast cancer. Oncotarget, 7(13):16445-16461.

[32]Yang, J.T., Tang, L.H., Liu, Y.Q., et al., 2015. Cisplatin combined with hyperthermia kills HepG2 cells in intraoperative blood salvage but preserves the function of erythrocytes. J. Zhejiang Univ.-Sci. B (Biomed. & Biotechnol.), 16(5):395-403.

[33]Zwirner, N.W., Fuertes, M.B., Girart, M.V., et al., 2007. Cytokine-driven regulation of NK cell functions in tumor immunity: role of the MICA-NKG2D system. Cytokine Growth Factor Rev., 18(1-2):159-170.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE