CLC number: R782.1
On-line Access: 2018-01-11
Received: 2016-12-07
Revision Accepted: 2017-02-20
Crosschecked: 2017-12-15
Cited: 0
Clicked: 5476
Yun-Feng Liu, Russell Wang, Dale A. Baur, Xian-Feng Jiang. A finite element analysis of the stress distribution to the mandible from impact forces with various orientations of third molars[J]. Journal of Zhejiang University Science B, 2018, 19(1): 38-48.
@article{title="A finite element analysis of the stress distribution to the mandible from impact forces with various orientations of third molars",
author="Yun-Feng Liu, Russell Wang, Dale A. Baur, Xian-Feng Jiang",
journal="Journal of Zhejiang University Science B",
volume="19",
number="1",
pages="38-48",
year="2018",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1600552"
}
%0 Journal Article
%T A finite element analysis of the stress distribution to the mandible from impact forces with various orientations of third molars
%A Yun-Feng Liu
%A Russell Wang
%A Dale A. Baur
%A Xian-Feng Jiang
%J Journal of Zhejiang University SCIENCE B
%V 19
%N 1
%P 38-48
%@ 1673-1581
%D 2018
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1600552
TY - JOUR
T1 - A finite element analysis of the stress distribution to the mandible from impact forces with various orientations of third molars
A1 - Yun-Feng Liu
A1 - Russell Wang
A1 - Dale A. Baur
A1 - Xian-Feng Jiang
J0 - Journal of Zhejiang University Science B
VL - 19
IS - 1
SP - 38
EP - 48
%@ 1673-1581
Y1 - 2018
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1600552
Abstract: Objective: To investigate the stress distribution to the mandible, with and without impacted third molars (IM3s) at various orientations, resulting from a 2000-Newton impact force either from the anterior midline or from the body of the mandible. Materials and methods: A 3D mandibular virtual model from a healthy dentate patient was created and the mechanical properties of the mandible were categorized to 9 levels based on the Hounsfield unit measured from computed tomography (CT) images. Von Mises stress distributions to the mandibular angle and condylar areas from static impact forces (Load I-front blow and Load II left blow) were evaluated using finite element analysis (FEA). Six groups with IM3 were included: full horizontal bony, full vertical bony, full 450 mesioangular bony, partial horizontal bony, partial vertical, and partial 450 mesioangular bony impaction, and a baseline group with no third molars. Results: Von Mises stresses in the condyle and angle areas were higher for partially than for fully impacted third molars under both loading conditions, with partial horizontal IM3 showing the highest fracture risk. Stresses were higher on the contralateral than on the ipsilateral side. Under Load II, the angle area had the highest stress for various orientations of IM3s. The condylar region had the highest stress when IM3s were absent. Conclusions: High-impact forces are more likely to cause condylar rather than angular fracture when IM3s are missing. The risk of mandibular fracture is higher for partially than fully impacted third molars, with the angulation of impaction having little effect on facture risk.
[1]Afrooz PN, Bykowski MR, James IB, et al., 2015. The epidemiology of mandibular fractures in the United States, Part 1: a review of 13,142 cases from the US National Trauma Data Bank. J Oral Maxillofac Surg, 73(12):2361-2365.
[2]Antic S, Vukicevic AM, Milasinovic M, et al., 2015. Impact of the lower third molar presence and position on the fragility of mandibular angle and condyle: a three-dimensional finite element study. J Craniomaxillofac Surg, 43(6):870-878.
[3]Bezerra TP, Silva Jr FI, Scarparo HC, et al., 2013. Do erupted third molars weaken the mandibular angle after trauma to the chin region? A 3D finite element study. Int J Oral Maxillofac Surg, 42(4):474-480.
[4]Boffano P, Roccia F, 2010. Bilateral mandibular angle fractures: clinical considerations. Craniofac Surg, 21(2):328-331.
[5]Chrcanovic BR, Neto Custódio AL, 2010. Considerations of mandibular angle fractures during and after surgery for removal of third molars: a review of the literature. Oral Maxillofac Surg, 14(2):71-80.
[6]Cillo Jr JE, Ellis E, 2014. Management of bilateral mandibular angle fractures with combined rigid and nonrigid fixation. J Oral Maxillofac Surg, 72(1):106-111.
[7]Currey JD, 2002. Bones: Structure and Mechanics. Princeton University, Princeton, NJ.
[8]Donadille M, Vidal N, Ella B, et al., 2013. Biangular fractures of the mandible. Rev Stomatol Chir Maxillofac, 114(5):287-291.
[9]Duan DH, Zhang Y, 2008. Does the presence of mandibular third molars increase the risk of angle fracture and simultaneously decrease the risk of condylar fracture? Int J Oral Maxillofac Surg, 37(1):25-28.
[10]Duarte BG, Assis D, Ribeiro-Junior P, et al., 2012. Does the relationship between retained mandibular third molar and mandibular angle fracture exist? An assessment of three possible causes. Craniomaxillofac Trauma Reconstr, 5(3):127-136.
[11]Ethunandan M, Shanahan D, Patel M, 2012. Iatrogenic mandibular fractures following removal of impacted third molars: an analysis of 130 cases. Br Dent J, 212(4):179-184.
[12]Fuselier JC, Ellis III EE, Dodson B, 2002. Do mandibular third molars alter the risk of angle fracture? J Oral Maxillofac Surg, 60(5):514-518.
[13]Gaddipati R, Ramisetty S, Vura N, et al., 2014. Impacted mandibular third molars and their influence on mandibular angle and condyle fractures—a retrospective study. J Craniomaxillofac Surg, 42(7):1102-1105.
[14]Halazonetis JA, 1968. The ‘weak’ regions of the mandible. Br J Oral Surg, 6(1):37-48.
[15]Hanson BP, Cummings P, Rivara FP, et al., 2004. The association of third molars with mandibular angle fractures: a meta-analysis. J Can Dent Assoc, 70(1):39-43.
[16]Iida S, Hassefeld S, Reuther T, et al., 2005. Relationship between the risk of mandibular angle fractures and the status of incompletely erupted mandibular third molars. J Craniomaxillofac Surg, 33(3):158-163.
[17]Kan B, Coskunses FM, Mutlu I, et al., 2015. Effects of inter-implant distance and implant length on the response to frontal traumatic force of two anterior implants in an atrophic mandible: three-dimensional finite element analysis. Int J Oral Maxillofac Surg, 44(7):908-913.
[18]Kumar SR, Sinha R, Uppada UK, et al., 2015. Mandibular third molar position influencing the condylar and angular fracture patterns. J Maxillofac Oral Surg, 14(4):956-961.
[19]Lee JT, Dodson TB, 2000. The effect of mandibular third molar presence and position on the risk of an angle fracture. J Oral Maxillofac Surg, 58(4):394-398.
[20]Ma'aita J, Alwrikat A, 2000. Is the mandibular third molar a risk factor for mandibular angle fracture? Oral Surg Oral Med Oral Pathol Oral Radiol, 89(2):143-146.
[21]Meisami T, Sandor GKB, Lawrence HP, et al., 2002. Impacted third molars and risk of angle fracture. Int J Oral Maxillofac Surg, 31(2):140-144.
[22]Mercier P, Precious D, 1992. Risks and benefits of removal of impacted third molars. A critical review of the literature. Int J Oral Maxillofac Surg, 21(1):17-27.
[23]Naghipur S, Shah A, Elgazzar RF, 2014. Does the presence or position of lower third molars alter the risk of mandibular angle or condylar fractures? J Oral Maxillofac Surg, 72(9):1766-1772.
[24]Pakdel A, Fialkov J, Whyne CM, 2016. High resolution bone material property assignment yields robust subject specific finite element models of complex thin bone structures. J Biomech, 49(9):1454-1460.
[25]Rho JY, Hobatho MC, Ashman RB, 1995. Relations of mechanical properties to density and CT numbers in human bone. Med Eng Phys, 17(5):347-355.
[26]Rice JC, 1988. On the dependence of the elasticity and strength of cancellous bone on the apparent density. J Biomech, 21(2):155-168.
[27]Richard TH, Vincent VH, Nisra T, et al., 1992. Modeling the biomechanics of the mandible: a three-dimensional finite element study. J Biomech, 25(3):261-286.
[28]Ruffoni D, Fratzl P, Roschger P, et al., 2007. The bone mineralization density distribution as a fingerprint of the mineralization process. Bone, 40(5):1308-1319.
[29]Safdar N, Meechan JG, 1995. Relationship between fractures of mandibular angle and the presence and state of eruption of lower third molar. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 79(6):680-684.
[30]Singh P, Wang C, Ajmera DH, et al., 2016. Biomechanical effects of novel osteotomy approaches on mandibular expansion: a 3D finite element analysis. J Oral Maxillofac Surg, 74(8):1658.
[31]Tevepaugh DB, Dodson TB, 1995. Are mandibular third molars a factor for angle fractures? A retrospective cohort study. J Oral Maxillofac Surg, 53(6):646-650.
[32]Thangavelu R, Yoganandha R, Vaidhyanathan A, 2010. Impact of impacted mandibular third molars in mandibular angle and condyle fractures. Int J Oral Maxillofac Surg, 39(2):136-139.
[33]Venta I, Murtomaa H, Turtola L, et al., 1991. Clinical follow-up study of third molar eruption from ages 20 to 26 years. Oral Surg Oral Med Oral Pathol, 72(2):150-153.
[34]Weiner S, Wagner HD, 1998. The material bone: structure mechanical function relations. Ann Rev Mater Sci, 28(1):271-298.
[35]Werkmeister R, Fillies T, Joos U, et al., 2005. Relationship between lower wisdom tooth position and cyst development, deep abscess formation and mandibular angle fracture. J Craniomaxillofac Surg, 33(3):164-168.
[36]Xia ZY, Jiang FF, Chen J, 2013. Estimation of periodontal ligament’s equivalent mechanical parameters for finite element modeling. Am J Orth Dentofac Orthoped, 143(4):486-491.
Open peer comments: Debate/Discuss/Question/Opinion
<1>