Full Text:   <2221>

Summary:  <1303>

CLC number: R392.12

On-line Access: 2017-12-05

Received: 2017-01-02

Revision Accepted: 2017-07-24

Crosschecked: 2017-11-22

Cited: 0

Clicked: 3380

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2017 Vol.18 No.12 P.1055-1063


Comparison of the characteristics of macrophages derived from murine spleen, peritoneal cavity, and bone marrow

Author(s):  Yan-long Zhao, Pu-xun Tian, Feng Han, Jin Zheng, Xin-xin Xia, Wu-jun Xue, Xiao-ming Ding, Chen-guang Ding

Affiliation(s):  Department of Kidney Transplantation, Hospital of Nephropathy, the First Affiliated Hospital of Xian Jiaotong University, Xian 710061, China; more

Corresponding email(s):   doctor_ding@126.com

Key Words:  Macrophage, Murine splenocytes, Murine bone marrow, Peritoneal cavity

Yan-long Zhao, Pu-xun Tian, Feng Han, Jin Zheng, Xin-xin Xia, Wu-jun Xue, Xiao-ming Ding, Chen-guang Ding. Comparison of the characteristics of macrophages derived from murine spleen, peritoneal cavity, and bone marrow[J]. Journal of Zhejiang University Science B, 2017, 18(12): 1055-1063.

@article{title="Comparison of the characteristics of macrophages derived from murine spleen, peritoneal cavity, and bone marrow",
author="Yan-long Zhao, Pu-xun Tian, Feng Han, Jin Zheng, Xin-xin Xia, Wu-jun Xue, Xiao-ming Ding, Chen-guang Ding",
journal="Journal of Zhejiang University Science B",
publisher="Zhejiang University Press & Springer",

%0 Journal Article
%T Comparison of the characteristics of macrophages derived from murine spleen, peritoneal cavity, and bone marrow
%A Yan-long Zhao
%A Pu-xun Tian
%A Feng Han
%A Jin Zheng
%A Xin-xin Xia
%A Wu-jun Xue
%A Xiao-ming Ding
%A Chen-guang Ding
%J Journal of Zhejiang University SCIENCE B
%V 18
%N 12
%P 1055-1063
%@ 1673-1581
%D 2017
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1700003

T1 - Comparison of the characteristics of macrophages derived from murine spleen, peritoneal cavity, and bone marrow
A1 - Yan-long Zhao
A1 - Pu-xun Tian
A1 - Feng Han
A1 - Jin Zheng
A1 - Xin-xin Xia
A1 - Wu-jun Xue
A1 - Xiao-ming Ding
A1 - Chen-guang Ding
J0 - Journal of Zhejiang University Science B
VL - 18
IS - 12
SP - 1055
EP - 1063
%@ 1673-1581
Y1 - 2017
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1700003

macrophages have a diverse set of functions based upon their activation states. The activation states, including resting (M0) and polarizing (M1 and M2) states, of macrophages derived from the mouse bone marrow, spleen, and peritoneal cavity (BMs, SPMs, and PCMs, respectively) were compared. We evaluated the macrophage yield per mouse and compared the surface markers major histocompatibility complex (MHC) II and CD86 by flow cytometry. The relative mRNA levels of tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, mannose receptor (MR), and Ym1 in the M0, M1, and M2 states were also compared using real-time polymerase chain reaction (PCR) analysis. Bone marrow yielded the most macrophages with the best homogeneity, but they were polarized toward the M2 phenotype. All three types of macrophages had the capacity to polarize into the M1 and M2 states, but SPMs had a stronger capacity to polarize into M1. The three types of macrophages showed no differences in their capacity to polarize into the M2 state. Therefore, the three types of macrophages have distinct characteristics regardless of their resting or polarizing states. Although bone marrow can get large amounts of homogeneous macrophages, the macrophages cannot replace tissue-derived macrophages.


方法:通过小鼠脾脏研磨及单细胞贴壁获得脾源性巨噬细胞;腹腔灌洗及细胞贴壁获得腹腔源性巨噬细胞;骨髓贴壁细胞在巨噬细胞集落刺激因子体外刺激下培养7天获得骨髓源性巨噬细胞。三种细胞即为M0型巨噬细胞,M0在干扰素及脂多糖刺激下获得M1型巨噬细胞,M0在白介素4(IL-4)刺激下获得M2型巨噬细胞。通过流式细胞仪分析三种类型巨噬细胞在三种状态下的II类主要组织相容性复合体(MHC II)和CD86表达差异。通过实时荧光定量聚合酶链式反应(qPCR)检测肿瘤坏死因子α(TNF-α)、白介素1β(IL-1β)、甘露糖受体(MR)和类几丁质酶3样分子(Ym1)的表达变化。
结论:骨髓贴壁细胞培养能获得最大量的同源巨噬细胞(图1和2),但表型偏向于M2型巨噬细胞 (图3和4)。三种巨噬细胞均能极化为M1和M2型巨噬细胞(图5),其中SPMs具有更强的M1型极化能力,而M2型极化能力之间未见明显差异(图6)。综上所述,三种细胞无论在安静及极化状态下均具有不同的特征,骨髓可以获得大量同源性巨噬细胞,但性质不同于组织源性的脾脏和腹腔巨噬细胞。


Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article


[1]Alagesan, S., Griffin, M.D., 2014. Alternatively activated macrophages as therapeutic agents for kidney disease: in vivo stability is a key factor. Kidney Int., 85(4):730-733.

[2]Biswas, S.K., Mantovani, A., 2010. Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat. Immunol., 11(10):889-896.

[3]Cao, H., Wolff, R.G., Meltzer, M.S., et al., 1989. Differential regulation of class II MHC determinants on macrophages by IFN-γ and IL-4. J. Immunol., 143(11):3524-3531.

[4]Cao, Q., Wang, Y., Zheng, D., et al., 2014. Failed renoprotection by alternatively activated bone marrow macrophages is due to a proliferation-dependent phenotype switch in vivo. Kidney Int., 85(4):794-806.

[5]Chung, S., Ranjan, R., Lee, Y.G., et al., 2015. Distinct role of foxo1 in M-CSF- and GM-CSF-differentiated macrophages contributes LPS-mediated IL-10: implication in hyperglycemia. J. Leukoc. Biol., 97(2):327-339.

[6]Das, A., Sinha, M., Datta, S., et al., 2015. Monocyte and macrophage plasticity in tissue repair and regeneration. Am. J. Pathol., 185(10):2596-2606.

[7]Davies, L.C., Taylor, P.R., 2015. Tissue-resident macrophages: then and now. Immunology, 144(4):541-548.

[8]Duffield, J.S., 2010. Macrophages and immunologic inflammation of the kidney. Semin. Nephrol., 30(3):234-254.

[9]Feng, Y.H., Mao, H., 2012. Expression and preliminary functional analysis of Siglec-F on mouse macrophages. J. Zhejiang Univ.-Sci. B (Biomed. & Biotechnol.), 13(5):386-394.

[10]Gerrard, T.L., Dyer, D.R., Mostowski, H.S., 1990. IL-4 and granulocyte-macrophage colony-stimulating factor selectively increase HLA-DR and HLA-DP antigens but not HLA-DQ antigens on human monocytes. J. Immunol., 144(12):4670-4674.

[11]Gordon, S., Taylor, P.R., 2005. Monocyte and macrophage heterogeneity. Nat. Rev. Immunol., 5(12):953-964.

[12]Gordon, S., Martinez, F.O., 2010. Alternative activation of macrophages: mechanism and functions. Immunity, 32(5):593-604.

[13]Gordon, S., Pluddemann, A., Martinez Estrada, F., 2014. Macrophage heterogeneity in tissues: phenotypic diversity and functions. Immunol. Rev., 262(1):36-55.

[14]Hoover, D.L., Nacy, C.A., 1984. Macrophage activation to kill leishmania tropica: defective intracellular killing of amastigotes by macrophages elicited with sterile inflammatory agents. J. Immunol., 132(3):1487-1493.

[15]Jiang, X., 2015. Macrophage-produced IL-10 limits the chemotherapy efficacy in breast cancer. J. Zhejiang Univ.-Sci. B (Biomed. & Biotechnol.), 16(1):44-45.

[16]Komohara, Y., Jinushi, M., Takeya, M., 2014. Clinical significance of macrophage heterogeneity in human malignant tumors. Cancer Sci., 105(1):1-8.

[17]Lameijer, M.A., Tang, J., Nahrendorf, M., et al., 2013. Monocytes and macrophages as nanomedicinal targets for improved diagnosis and treatment of disease. Expert Rev. Mol. Diagn., 13(6):567-580.

[18]Lavin, Y., Mortha, A., Rahman, A., et al., 2015. Regulation of macrophage development and function in peripheral tissues. Nat. Rev. Immunol., 15(12):731-744.

[19]Lawrence, T., Natoli, G., 2011. Transcriptional regulation of macrophage polarization: enabling diversity with identity. Nat. Rev. Immunol., 11(11):750-761.

[20]Lee, S., Huen, S., Nishio, H., et al., 2011. Distinct macrophage phenotypes contribute to kidney injury and repair. J. Am. Soc. Nephrol., 22(2):317-326.

[21]Lu, J., Cao, Q., Zheng, D., et al., 2013. Discrete functions of M2a and M2c macrophage subsets determine their relative efficacy in treating chronic kidney disease. Kidney Int., 84(4):745-755.

[22]Mantovani, A., Sica, A., Sozzani, S., et al., 2004. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol., 25(12):677-686.

[23]Parsa, R., Andresen, P., Gillett, A., et al., 2012. Adoptive transfer of immunomodulatory M2 macrophages prevents type 1 diabetes in nod mice. Diabetes, 61(11):2881-2892.

[24]Raes, G., de Baetselier, P., Noel, W., et al., 2002. Differential expression of FIZZ1 and YM1 in alternatively versus classically activated macrophages. J. Leukoc. Biol., 71(4):597-602.

[25]Ray, A., Dittel, B.N., 2010. Isolation of mouse peritoneal cavity cells. J. Vis. Exp., 35:e1488.

[26]Sica, A., Erreni, M., Allavena, P., et al., 2015. Macrophage polarization in pathology. Cell Mol. Life Sci., 72(21):4111-4126.

[27]Thornley, T.B., Fang, Z., Balasubramanian, S., et al., 2014. Fragile TIM-4-expressing tissue resident macrophages are migratory and immunoregulatory. J. Clin. Invest., 124(8):3443-3454.

[28]Weischenfeldt, J., Porse, B., 2008. Bone marrow-derived macrophages (BMM): isolation and applications. CSH Protoc., 2008:5080.

[29]Wilson, H.M., Walbaum, D., Rees, A.J., 2004. Macrophages and the kidney. Curr. Opin. Nephrol. Hypertens., 13(3):285-290.

[30]Zhang, X., Goncalves, R., Mosser, D.M., 2008. The isolation and characterization of murine macrophages. Curr. Protoc. Immunol., 14:11.

Open peer comments: Debate/Discuss/Question/Opinion


Please provide your name, email address and a comment

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2022 Journal of Zhejiang University-SCIENCE