CLC number: Q36
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2017-09-15
Cited: 0
Clicked: 3710
Ling Hong, Jun-li Liu, Samira Z. Midoun, Philip C. Miller. Transcriptome sequencing and annotation of the halophytic microalga Dunaliella salina[J]. Journal of Zhejiang University Science B, 2017, 18(10): 833-844.
@article{title="Transcriptome sequencing and annotation of the halophytic microalga Dunaliella salina",
author="Ling Hong, Jun-li Liu, Samira Z. Midoun, Philip C. Miller",
journal="Journal of Zhejiang University Science B",
volume="18",
number="10",
pages="833-844",
year="2017",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1700088"
}
%0 Journal Article
%T Transcriptome sequencing and annotation of the halophytic microalga Dunaliella salina
%A Ling Hong
%A Jun-li Liu
%A Samira Z. Midoun
%A Philip C. Miller
%J Journal of Zhejiang University SCIENCE B
%V 18
%N 10
%P 833-844
%@ 1673-1581
%D 2017
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1700088
TY - JOUR
T1 - Transcriptome sequencing and annotation of the halophytic microalga Dunaliella salina
A1 - Ling Hong
A1 - Jun-li Liu
A1 - Samira Z. Midoun
A1 - Philip C. Miller
J0 - Journal of Zhejiang University Science B
VL - 18
IS - 10
SP - 833
EP - 844
%@ 1673-1581
Y1 - 2017
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1700088
Abstract: The unicellular green alga Dunaliella salina is well adapted to salt stress and contains compounds (including β-carotene and vitamins) with potential commercial value. A large transcriptome database of D. salina during the adjustment, exponential and stationary growth phases was generated using a high throughput sequencing platform. We characterized the metabolic processes in D. salina with a focus on valuable metabolites, with the aim of manipulating D. salina to achieve greater economic value in large-scale production through a bioengineering strategy. Gene expression profiles under salt stress verified using quantitative polymerase chain reaction (qPCR) implied that salt can regulate the expression of key genes. This study generated a substantial fraction of D. salina transcriptional sequences for the entire growth cycle, providing a basis for the discovery of novel genes. This first full-scale transcriptome study of D. salina establishes a foundation for further comparative genomic studies.
[1]Alkayala, F., Albionb, R.L., Tillettb, R.L., et al., 2010. Expressed sequence tag (EST) profiling in hyper saline shocked Dunaliella salina reveals high expression of protein synthetic apparatus components. Plant Sci., 179(5):437-449.
[2]Bradbury, L.M.T., Shumskaya, M., Tzfadia, O., et al., 2012. Lycopene cyclase paralog CruP protects against reactive oxygen species in oxygenic photosynthetic organisms. Proc. Natl. Acad. Sci. USA, 109:E1888-E1897.
[3]Brewster, J.L., Gustin, M.C., 2014. Hog1: 20 years of discovery and impact. Sci. Signal, 7(343):re7.
[4]Cai, M., He, L.H., Yu, T.Y., 2013. Molecular clone and expression of a NAD+-dependent glycerol-3-phosphate dehydrogenase isozyme gene from the halotolerant alga Dunaliella salina. PLoS ONE, 8(4):e62287.
[5]Chen, H., Jiang, J., 2009. Osmotic responses of Dunaliella to the changes of salinity. J. Cell Physiol., 219(2):251-258.
[6]Chen, H., Lao, Y.M., Jiang, J.G., 2011. Effects of salinities on the gene expression of a (NAD+)-dependent glycerol-3-phosphate dehydrogenase in Dunaliella salina. Sci. Total Environ., 409(7):1291-1297.
[7]Chen, H., Lu, Y., Jiang, J.G., 2012. Comparative analysis on the key enzymes of the glycerol cycle metabolic pathway in Dunaliella salina under osmotic stresses. PLoS ONE, 7(6):e37578.
[8]Conesa, A., Götz, S., García-Gomez, J.M., et al., 2005. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics, 21(18):3674-3676.
[9]Couso, I., Vila, M., Rodriguez, H., et al., 2011. Overexpression of an exogenous phytoene synthase gene in the unicellular alga Chlamydomonas reinhardtii leads to an increase in the content of carotenoids. Biotechnol. Prog., 27(1):54-60.
[10]Deng, G., Liang, J., Xu, D., et al., 2013. The relationship between proline content, the expression level of P5CS (Δ1-pyrroline-5-carboxylate synthetase), and drought tolerance in tibetan hulless barley (Hordeum vulgare var. nudum). Russ. J. Plant Physiol., 60(5):693-700.
[11]Ferriols, V.M.E.N., Yaginuma, R., Adachi, M., et al., 2015. Cloning and characterization of farnesyl pyrophosphate synthase from the highly branched isoprenoid producing diatom Rhizosolenia setigera. Sci. Rep., 5:10246.
[12]García, F., Freile-Pelegrin, Y., Robledo, D., 2007. Physiological characterization of Dunaliella sp. (Chlorophyta, Volvocales) from Yucatan, Mexico. Bioresour. Technol., 98(7):1359-1365.
[13]Goyal, A., 2007a. Osmoregulation in Dunaliella, part I: effects of osmotic stress on photosynthesis, dark respiration and glycerol metabolism in Dunaliella tertiolecta and its salt-sensitive mutant (HL 25/8). Plant Physiol. Biochem., 45(9):696-704.
[14]Goyal, A., 2007b. Osmoregulation in Dunaliella, Part II: photosynthesis and starch contribute carbon for glycerol synthesis during a salt stress in Dunaliella tertiolecta. Plant Physiol. Biochem., 45(9):705-710.
[15]Grabherr, M.G., Haas, B.J., Yassour, M., et al., 2011. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol., 29(7):644-654.
[16]Hamana, K., Matsuzaki, S., 1982. Widespread occurrence of norspermidine and norspermine in eukaryotic algae. J. Biochem., 91(4):1321-1328.
[17]Huson, D.H., Mitra, S., Ruscheweyh, H.J., et al., 2011. Integrative analysis of environmental sequences using MEGAN4. Genome Res., 21(9):1552-1560.
[18]Jensen, L.J., Julien, P., Kuhn, M., et al., 2008. eggNOG: automated construction and annotation of orthologous groups of genes. Nucleic Acids Res., 36(Databse issue):D250-D254.
[19]Kim, J., Smith, J.J., Tian, L., et al., 2009. The evolution and function of carotenoid hydroxylases in Arabidopsis. Plant Cell Physiol., 50(3):463-479.
[20]Liu, H., Wu, W., Hou, K., et al., 2015. Transcriptome changes in Polygonum multiflorum Thunb. roots induced by methyl jasmonate. J. Zhejiang Univ.-Sci. B (Biomed. & Biotechnol.), 16(12):1027-1041.
[21]Liu, J., Zhang, D., Hong, L., 2014. Isolation, characterization and functional annotation of the salt tolerance genes through screening the high-quality cDNA library of the halophytic green alga Dunaliella salina (Chlorophyta). Ann. Microbiol., 24(3):1293-1302.
[22]Marco, F., Alcázar, R.N., Tiburcio, A.F., et al., 2011. Interactions between polyamines and abiotic stress pathway responses unraveled by transcriptome analysis of polyamine overproducers. OMICS, 15(11):775-782.
[23]Mishra, A., Mandoli, A., Jha, B., 2008. Physiological characterization and stress-induced metabolic responses of Dunaliella salina isolated from salt pan. J. Ind. Microbiol. Biot., 35(10):1093-1101.
[24]Mogedas, B., Casal, C., Forján, E., et al., 2009. β-Carotene production enhancement by UV-A radiation in Dunaliella bardawil cultivated in laboratory reactors. J. Biosci. Bioeng., 108(1):47-51.
[25]Moriya, Y., Itoh, M., Okuda, S., et al., 2007. KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res., 35(Suppl. 2):W182-W185.
[26]Mortazavi, A., Williams, B.A., McCue, K., et al., 2008. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods, 5(7):621-628.
[27]Rabbani, S., Beyer, P., Lintig, J.V., et al., 1998. Induced β-carotene synthesis driven by triacylglycerol deposition in the unicellular alga Dunaliella bardawil. Plant Physiol., 116:1239-1248.
[28]Rad, F.A., Aksoz, N., Hejazi, M.A., 2011. Effect of salinity on cell growth and β-carotene production in Dunaliella sp. isolates from Urmia Lake in northwest of Ira. Afr. J. Biotechnol., 10(12):2282-2289.
[29]Ramos, A.A., Polle, J., Tran, D., et al., 2011. The unicellular green alga Dunaliella salina Teod. as a model for abiotic stress tolerance: genetic advances and future perspectives. Harmful Algae, 26(1):3-20.
[30]Rismani-Yazdi, H., Haznedaroglu, B.Z., Bibby, K., et al., 2011. Transcriptome sequencing and annotation of the microalgae Dunaliella tertiolecta: pathway description and gene discovery for production of next-generation biofuels. BMC Genomics, 12:148.
[31]Sathasivam, R., Kermanee, P., Roytrakul, S., et al., 2012. Isolation and molecular identification of β-carotene producing strains of Dunaliella salina and Dunaliella bardawil from salt soil samples by using species-specific primers and internal transcribed spacer (ITS) primers. Afr. J. Biotechnol., 11(102):16677-16687.
[32]Smith, D.R., Lee, R.W., Cushman, J.C., et al., 2010. The Dunaliella salina organelle genomes: large sequences, inflated with intronic and intergenic DNA. BMC Plant Biol., 10:14.
[33]Steinbrenner, J., Linden, H., 2001. Regulation of two carotenoid biosynthesis genes coding for phytoene synthase and carotenoid hydroxylase during stress-induced astaxanthin formation in the green alga Haematococcus pluvialis. Plant Physiol., 125(2):810-817.
[34]Surget-Groba, Y., Montoya-Burgos, J.I., 2010. Optimization of de novo transcriptome assembly from next-generation sequencing data. Genome Res., 20:1432-1440.
[35]Theiss, C., Bohley, P., Voigt, J., 2002. Regulation by polyamines of ornithine decarboxylase activity and cell division in the unicellular green alga Chlamydomonas reinhardtii. Plant Physiol., 128(4):1470-1479.
[36]Tian, J., Yu, J., 2009. Changes in ultrastructure and responses of antioxidant systems of algae (Dunaliella salina) during acclimation to enhanced ultraviolet-B radiation. J. Photochem. Photobiol. B, 97(3):152-160.
[37]Tran, D., Haven, J., Qiu, W.G., et al., 2009. An update on carotenoid biosynthesis in algae: phylogenetic evidence for the existence of two classes of phytoene synthase. Planta, 229(3):723-729.
[38]Varela, J.C., Pereira, H., Vila, M., et al., 2015. Production of carotenoids by microalgae: achievements and challenges. Photosynth. Res., 125:423-436.
[39]Venekamp, J.H., 2006. Regulation of cytosol acidity in plants under conditions of drought. Physiol. Plantarum, 76(1):112-117.
[40]Voigt, J., Deinert, B., Bohley, P., 2000. Subcellular localization and light-dark control of ornithine decarboxylase in the unicellular green alga Chlamydomonas reinhardtii. Physiol. Plant, 108(2000):353-360.
[41]Wang, X., Xia, X., Huang, F., et al., 2012. Genetic modification of secondary metabolite biosynthesis in higher plants: a review. J. Biotechnol., 28(10):1151-1163 (in Chinese).
[42]Wang, Z., Fang, B., Chen, J., et al., 2010. De novo assembly and characterization of root transcriptome using Illumina paired-end sequencing and development of cSSR markers in sweetpotato (Ipomoea batatas). BMC Genomics, 11: 726-739.
[43]Xu, D.L., Long, H., Liang, J.J., et al., 2012. De novo assembly and characterization of the root transcriptome of Aegilops variabilis during an interaction with the cereal cyst nematode. BMC Genomics, 13:133-141.
[44]Zhao, R., Cao, Y., Xu, H., et al., 2011. Analysis of espressed sequence tags from the green alga Dunaliella salina (Chalrophyta). J. Phycol., 47(6):1454-1460.
[45]List of electronic supplementary materials
[46]Data S1 Sequences of the genes identified in D. salina transcriptome
[47]Table S1 Primers of those selective genes involved in the metabolic processes in D. salina
[48]Table S2 Summary of annotation of D. salina transcriptome
[49]Table S3 Top-hit species (viridiplantae) list of D. salina BLAST-annotated uniseqs
[50]Table S4 Enzymes identified in metabolism of osmolytes (glycerol and proline), polyamines, and carotenoid through annotation of D. salina transcriptome
[51]Table S5 The best hit of the highlighted enzymes in the metabolic processes of D. salina
[52]Fig. S1 KOG (euKaryotic Ortholog Groups) functional classification of D. salina uniseqs
[53]Fig. S2 Gene ontology (GO) annotation of D. salina transcriptome
[54]Fig. S3 KEGG functional analyses of D. salina uniseqs
Open peer comments: Debate/Discuss/Question/Opinion
<1>