Full Text:   <2216>

Summary:  <1734>

CLC number: R945

On-line Access: 2019-03-01

Received: 2018-06-22

Revision Accepted: 2018-10-14

Crosschecked: 2019-01-10

Cited: 0

Clicked: 6114

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Xiang-rui Liu

https://orcid.org/0000-0003-4960-5847

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2019 Vol.20 No.3 P.273-281

http://doi.org/10.1631/jzus.B1800346


Enhanced water solubility, antioxidant activity, and oral absorption of hesperetin by D-α-tocopheryl polyethylene glycol 1000 succinate and phosphatidylcholine


Author(s):  Su-fang Gu, Li-ying Wang, Ying-jie Tian, Zhu-xian Zhou, Jian-bin Tang, Xiang-rui Liu, Hai-ping Jiang, You-qing Shen

Affiliation(s):  Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; more

Corresponding email(s):   xiangrui@zju.edu.cn, jianghaiping75@163.com

Key Words:  Hesperetin, D-α, -Tocopheryl polyethylene glycol 1000 succinate (TPGS), Phosphatidylcholine, Antioxidant activity, Oral absorption


Su-fang Gu, Li-ying Wang, Ying-jie Tian, Zhu-xian Zhou, Jian-bin Tang, Xiang-rui Liu, Hai-ping Jiang, You-qing Shen. Enhanced water solubility, antioxidant activity, and oral absorption of hesperetin by D-α-tocopheryl polyethylene glycol 1000 succinate and phosphatidylcholine[J]. Journal of Zhejiang University Science B, 2019, 20(3): 273-281.

@article{title="Enhanced water solubility, antioxidant activity, and oral absorption of hesperetin by D-α-tocopheryl polyethylene glycol 1000 succinate and phosphatidylcholine",
author="Su-fang Gu, Li-ying Wang, Ying-jie Tian, Zhu-xian Zhou, Jian-bin Tang, Xiang-rui Liu, Hai-ping Jiang, You-qing Shen",
journal="Journal of Zhejiang University Science B",
volume="20",
number="3",
pages="273-281",
year="2019",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1800346"
}

%0 Journal Article
%T Enhanced water solubility, antioxidant activity, and oral absorption of hesperetin by D-α-tocopheryl polyethylene glycol 1000 succinate and phosphatidylcholine
%A Su-fang Gu
%A Li-ying Wang
%A Ying-jie Tian
%A Zhu-xian Zhou
%A Jian-bin Tang
%A Xiang-rui Liu
%A Hai-ping Jiang
%A You-qing Shen
%J Journal of Zhejiang University SCIENCE B
%V 20
%N 3
%P 273-281
%@ 1673-1581
%D 2019
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1800346

TY - JOUR
T1 - Enhanced water solubility, antioxidant activity, and oral absorption of hesperetin by D-α-tocopheryl polyethylene glycol 1000 succinate and phosphatidylcholine
A1 - Su-fang Gu
A1 - Li-ying Wang
A1 - Ying-jie Tian
A1 - Zhu-xian Zhou
A1 - Jian-bin Tang
A1 - Xiang-rui Liu
A1 - Hai-ping Jiang
A1 - You-qing Shen
J0 - Journal of Zhejiang University Science B
VL - 20
IS - 3
SP - 273
EP - 281
%@ 1673-1581
Y1 - 2019
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1800346


Abstract: 
hesperetin, an abundant bioactive component of citrus fruits, is poorly water-soluble, resulting in low oral bioavailability. We developed new formulations to improve the water solubility, antioxidant activity, and oral absorption of hesperetin. Two nano-based formulations were developed, namely hesperetin-TPGS (D;-tocopheryl polyethylene glycol 1000 succinate) micelles and hesperetin-phosphatidylcholine (PC) complexes. These two formulations were prepared by a simple technique called solvent dispersion, using US Food and Drug Administration (FDA)-approved excipients for drugs. Differential scanning calorimetry (DSC) and dynamic light scattering (DLS) were used to characterize the formulations’ physical properties. Cytotoxicity analysis, cellular antioxidant activity assay, and a pharmacokinetic study were performed to evaluate the biological properties of these two formulations. The final weight ratios of both hesperetin to TPGS and hesperetin to PC were 1:12 based on their water solubility, which increased to 21.5- and 20.7-fold, respectively. The hesperetin-TPGS micelles had a small particle size of 26.19 nm, whereas the hesperetin-PC complexes exhibited a larger particle size of 219.15 nm. In addition, the cellular antioxidant activity assay indicated that both hesperetin-TPGS micelles and hesperetin-PC complexes increased the antioxidant activity of hesperetin to 4.2- and 3.9-fold, respectively. Importantly, the in vivo oral absorption study on rats indicated that the micelles and complexes significantly increased the peak plasma concentration (Cmax) from 2.64 μg/mL to 20.67 and 33.09 μg/mL and also increased the area under the concentration–time curve of hesperetin after oral administration to 16.2- and 18.0-fold, respectively. The micelles and complexes increased the solubility and remarkably improved the in vitro antioxidant activity and in vivo oral absorption of hesperetin, indicating these formulations’ potential applications in drugs and healthcare products.

高水溶性、抗氧化活性和口服吸收率的橙皮素纳米制剂的制备

目的:橙皮素拥有抗氧化、抗炎和降脂等多种生理活性,但由于其水溶性差、代谢快,导致其口服生物利用度很低.因此,本研究制备了橙皮素-维生素E聚乙二醇琥珀酸酯(TPGS)胶束和橙皮素-磷脂酰胆碱(PC)复合物,来提高橙皮素的水溶性、抗氧化活性和口服吸收率.
创新点:本研究使用美国食品药品监督管理局(US FDA)批准的辅料制备了两种纳米制剂:橙皮素-TPGS胶束和橙皮素-PC复合物.不仅制备方法简单,而且能显著提高橙皮素的水溶性、抗氧化活性和口服吸收率.
方法:本研究使用溶剂分散法制备纳米制剂.将橙皮素与分散剂溶于有机溶剂中,在40 °C下搅拌30 min,然后旋转蒸发除去溶剂,用水复溶即得橙皮素-TPGS胶束和橙皮素-PC复合物.本研究使用差示扫描量热法表征纳米制剂的热效应;用动态光散射法测定纳米制剂的粒径;用噻唑蓝(MTT)法检测纳米制剂的细胞毒性;用细胞抗氧化活性测定法对比纳米制剂与橙皮素本身的抗氧化活性;使用灌胃法评估纳米制剂的口服吸收效果.
结论:研究结果发现:以质量比1:12制备的橙皮素-TPGS胶束和橙皮素-PC复合物,其粒径分别为26.19和219.15 nm,没有明显的细胞毒性,同时能够将橙皮素的水溶性分别提高到21.5和20.7倍,抗氧化活性分别提高到4.2和3.9倍,口服生物利用分别提高到16.2和18.0倍.因此,这两种纳米制剂在药剂和保健品制造方面具有重要的应用价值.

关键词:橙皮素;维生素E聚乙二醇琥珀酸酯(TPGS);磷脂酰胆碱(PC);抗氧化活性;口服吸收

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Attili-Qadri S, Karra N, Nemirovski A, et al., 2013. Oral delivery system prolongs blood circulation of docetaxel nanocapsules via lymphatic absorption. Proc Natl Acad Sci USA, 110(43):17498-17503.

[2]Brand W, van der Wel PAI, Rein MJ, et al., 2008. Metabolism and transport of the citrus flavonoid hesperetin in Caco-2 cell monolayers. Drug Metab Dispos, 36(9):1794-1802.

[3]Choudhury H, Gorain B, Pandey M, et al., 2017. Recent advances in TPGS-based nanoparticles of docetaxel for improved chemotherapy. Int J Pharm, 529(1-2):506-522.

[4]de Souza VT, de Franco ÉPD, de Araújo MEMB, et al., 2016. Characterization of the antioxidant activity of aglycone and glycosylated derivatives of hesperetin: an in vitro and in vivo study. J Mol Recognit, 29(2):80-87.

[5]Dintaman JM, Silverman JA, 1999. Inhibition of P-glycoprotein by D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS). Pharm Res, 16(10):1550-1556.

[6]Kanaze FI, Bounartzi MI, Georgarakis M, et al., 2007. Pharmacokinetics of the citrus flavanone aglycones hesperetin and naringenin after single oral administration in human subjects. Eur J Clin Nutr, 61(4):472-477.

[7]Khan J, Alexander A, Ajazuddin, et al., 2013. Recent advances and future prospects of phyto-phospholipid complexation technique for improving pharmacokinetic profile of plant actives. J Control Release, 168(1):50-60.

[8]Kim HJ, Jeon SM, Lee MK, et al., 2010. Comparison of hesperetin and its metabolites for cholesterol-lowering and antioxidative efficacy in hypercholesterolemic hamsters. J Med Food, 13(4):808-814.

[9]Krasavage WJ, Terhaar CJ, 1977. d-α-Tocopheryl poly(ethylene glycol) 1000 succinate. Acute toxicity, subchronic feeding, reproduction, and teratologic studies in the rat. J Agric Food Chem, 25(2):273-278.

[10]Li Y, Yang DJ, Chen SL, et al., 2008. Process parameters and morphology in puerarin, phospholipids and their complex microparticles generation by supercritical antisolvent precipitation. Int J Pharm, 359(1-2):35-45.

[11]Liu LX, Chen J, 2008. Solubility of hesperetin in various solvents from (288.2 to 323.2) K. J Chem Eng Data, 53(7):1649-1650.

[12]Maiti K, Mukherjee K, Murugan V, et al., 2009. Exploring the effect of hesperetin-HSPC complex—a novel drug delivery system on the in vitro release, therapeutic efficacy and pharmacokinetics. AAPS PharmSciTech, 10(3):943-950.

[13]Németh K, Plumb GW, Berrin JG, et al., 2003. Deglycosylation by small intestinal epithelial cell β-glucosidases is a critical step in the absorption and metabolism of dietary flavonoid glycosides in humans. Eur J Nutr, 42(1):29-42.

[14]Parhiz H, Roohbakhsh A, Soltani F, et al., 2015. Antioxidant and anti-inflammatory properties of the citrus flavonoids hesperidin and hesperetin: an updated review of their molecular mechanisms and experimental models. Phytother Res, 29(3):323-331.

[15]Qin LH, Niu YW, Wang YM, et al., 2018. Combination of phospholipid complex and submicron emulsion techniques for improving oral bioavailability and therapeutic efficacy of water-insoluble drug. Mol Pharm, 15(3):1238-1247.

[16]Roohbakhsh A, Parhiz H, Soltani F, et al., 2014. Neuropharmacological properties and pharmacokinetics of the citrus flavonoids hesperidin and hesperetin—a mini-review. Life Sci, 113(1-2):1-6.

[17]Shete G, Pawar YB, Thanki K, et al., 2015. Oral bioavailability and pharmacodynamic activity of hesperetin nanocrystals generated using a novel bottom-up technology. Mol Pharm, 12(4):1158-1170.

[18]Shin GH, Li JL, Cho JH, et al., 2016. Enhancement of curcumin solubility by phase change from crystalline to amorphous in cur-TPGS nanosuspension. J Food Sci, 81(2):N494-N501.

[19]Singh H, Narang JK, Singla YP, et al., 2017. TPGS stabilized sublingual films of frovatriptan for the management of menstrual migraine: formulation, design and antioxidant activity. J Drug Deliv Sci Technol, 41:144-156.

[20]Testai L, Calderone V, 2017. Nutraceutical value of citrus flavanones and their implications in cardiovascular disease. Nutrients, 9(5):502.

[21]Varma MVS, Panchagnula R, 2005. Enhanced oral paclitaxel absorption with vitamin E-TPGS: effect on solubility and permeability in vitro, in situ and in vivo. Eur J Pharm Sci, 25(4-5):445-453.

[22]Wang JN, Wang LL, Zhang L, et al., 2018. Studies on the curcumin phospholipid complex solidified with Soluplus®. J Pharm Pharmacol, 70(2):242-249.

[23]Wolfe KL, Liu RH, 2007. Cellular antioxidant activity (CAA) assay for assessing antioxidants, foods, and dietary supplements. J Agric Food Chem, 55(22):8896-8907.

[24]Zhang ZP, Tan SW, Feng SS, 2012. Vitamin E TPGS as a molecular biomaterial for drug delivery. Biomaterials, 33(19):4889-4906.

[25]Zhao BX, Gu SF, Du Y, et al., 2018. Solid lipid nanoparticles as carriers for oral delivery of hydroxysafflor yellow A. Int J Pharm, 535(1-2):164-171.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE