Full Text:   <2016>

Summary:  <1414>

Suppl. Mater.: 

CLC number: 

On-line Access: 2021-09-10

Received: 2020-09-11

Revision Accepted: 2021-02-08

Crosschecked: 0000-00-00

Cited: 0

Clicked: 3257

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Zhaoyu LIU

https://orcid.org/0000-0002-2754-8661

Jingfeng WANG

https://orcid.org/0000-0002-9292-6884

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2021 Vol.22 No.9 P.718-732

http://doi.org/10.1631/jzus.B2000544


Bioinformatic analysis for potential biological processes and key targets of heart failure-related stroke


Author(s):  Chiyu LIU, Sixu CHEN, Haifeng ZHANG, Yangxin CHEN, Qingyuan GAO, Zhiteng CHEN, Zhaoyu LIU, Jingfeng WANG

Affiliation(s):  Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; more

Corresponding email(s):   liuzhy98@mail.sysu.edu.cn, dr_wjf@vip.163.com

Key Words:  Cardioembolic stroke, Heart failure, Bioinformatics, Weighted gene co-expression network analysis (WGCNA)


Chiyu LIU, Sixu CHEN, Haifeng ZHANG, Yangxin CHEN, Qingyuan GAO, Zhiteng CHEN, Zhaoyu LIU, Jingfeng WANG. Bioinformatic analysis for potential biological processes and key targets of heart failure-related stroke[J]. Journal of Zhejiang University Science B, 2021, 22(9): 718-732.

@article{title="Bioinformatic analysis for potential biological processes and key targets of heart failure-related stroke",
author="Chiyu LIU, Sixu CHEN, Haifeng ZHANG, Yangxin CHEN, Qingyuan GAO, Zhiteng CHEN, Zhaoyu LIU, Jingfeng WANG",
journal="Journal of Zhejiang University Science B",
volume="22",
number="9",
pages="718-732",
year="2021",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B2000544"
}

%0 Journal Article
%T Bioinformatic analysis for potential biological processes and key targets of heart failure-related stroke
%A Chiyu LIU
%A Sixu CHEN
%A Haifeng ZHANG
%A Yangxin CHEN
%A Qingyuan GAO
%A Zhiteng CHEN
%A Zhaoyu LIU
%A Jingfeng WANG
%J Journal of Zhejiang University SCIENCE B
%V 22
%N 9
%P 718-732
%@ 1673-1581
%D 2021
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B2000544

TY - JOUR
T1 - Bioinformatic analysis for potential biological processes and key targets of heart failure-related stroke
A1 - Chiyu LIU
A1 - Sixu CHEN
A1 - Haifeng ZHANG
A1 - Yangxin CHEN
A1 - Qingyuan GAO
A1 - Zhiteng CHEN
A1 - Zhaoyu LIU
A1 - Jingfeng WANG
J0 - Journal of Zhejiang University Science B
VL - 22
IS - 9
SP - 718
EP - 732
%@ 1673-1581
Y1 - 2021
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B2000544


Abstract: 
This study aimed to uncover underlying mechanisms and promising intervention targets of heart failure (HF)-related stroke. HF-related dataset GSE42955 and stroke-related dataset GSE58294 were obtained from the Gene Expression Omnibus (GEO) database. weighted gene co-expression network analysis (WGCNA) was conducted to identify key modules and hub genes. Gene Ontology (GO) and pathway enrichment analyses were performed on genes in the key modules. Genes in HF- and stroke-related key modules were intersected to obtain common genes for HF-related stroke, which were further intersected with hub genes of stroke-related key modules to obtain key genes in HF-related stroke. Key genes were functionally annotated through GO in the Reactome and Cytoscape databases. Finally, key genes were validated in these two datasets and other datasets. HF- and stroke-related datasets each identified two key modules. Functional enrichment analysis indicated that protein ubiquitination, Wnt signaling, and exosomes were involved in both HF- and stroke-related key modules. Additionally, ten hub genes were identified in stroke-related key modules and 155 genes were identified as common genes in HF-related stroke. OTU deubiquitinase with linear linkage specificity (OTULIN) and nuclear factor interleukin 3-regulated (NFIL3) were determined to be the key genes in HF-related stroke. Through functional annotation, OTULIN was involved in protein ubiquitination and Wnt signaling, and NFIL3 was involved in DNA binding and transcription. Importantly, OTULIN and NFIL3 were also validated to be differentially expressed in all HF and stroke groups. Protein ubiquitination, Wnt signaling, and exosomes were involved in HF-related stroke. OTULIN and NFIL3 may play a key role in HF-related stroke through regulating these processes, and thus serve as promising intervention targets.

心力衰竭相关脑卒中的潜在生物学过程和关键靶点的生物学分析

目的:本研究通过加权基因共表达网络分析(Weighted gene co-expression network analysis,WGCNA)揭示心力衰竭(心衰)相关脑卒中的发病机制,为临床防治心衰相关脑卒中提供关键靶点。
创新点:本研究基于网络的研究策略,首次揭示了心衰相关脑卒中的潜在分子相互作用机制以及可能参与的生物学过程,并筛选出其中的关键基因。
方法:我们从基因表达综合数据库(Gene Expression Omnibus database,GEO)中分别获得心衰和脑卒中相关的芯片数据,并通过WGCNA鉴定各自的关键模块与关键基因。然后我们将二者的关键模块与关键基因取交集后,得到心衰相关脑卒中的关键基因,并利用Reactome和Cytoscape数据库对关键基因进行功能注释。最后在多个数据集中对心衰相关脑卒中的关键基因进行验证。
结果:我们在心衰和脑卒中相关芯片数据中分别鉴定出两个关键模块,随后功能富集分析发现两种疾病的关键模块中的基因均参与了蛋白质泛素化,Wnt信号通路和外泌体三个生物学过程。取交集后,我们共得到155个共同基因,他们可能参与了心衰相关脑卒中的发病机制。其中,OTULINNFIL3被识别为心衰相关脑卒中的关键基因。功能注释分析显示,OTULIN参与了蛋白质泛素化和Wnt信号通路,NFIL3参与了转录和翻译过程。最后,在多个心衰和脑卒中的芯片数据中均证实OTULINNFIL3表达显著上调。
结论:蛋白质泛素化,Wnt信号通路和外泌体等生物学过程在心衰相关脑卒中的发病机制中发挥了重要作用。OTULINNFIL3通过调节这些通路因而可作为心衰相关脑卒中潜在的干预靶点。

关键词:心力衰竭;心源性卒中;生物信息学分析;加权基因共表达网络分析(WGCNA)

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]AdamsHP, BendixenBH, KappelleLJ, et al., 1993. Classification of subtype of acute ischemic stroke. Definitions for use in a multicenter clinical trial. TOAST. Trial of Org 10172 in Acute Stroke Treatment. Stroke, 24(1):35-41.

[2]AguilarMI, HartR, PearceLA, 2007. Oral anticoagulants versus antiplatelet therapy for preventing stroke in patients with non-valvular atrial fibrillation and no history of stroke or transient ischemic attacks. Cochrane Database Syst Rev, 3:CD006186.

[3]AshburnerM, BallCA, BlakeJA, et al., 2000. Gene ontology: tool for the unification of biology. Nat Genet, 25(1):25-29.

[4]BangC, BatkaiS, DangwalS, et al., 2014. Cardiac fibroblast-derived microRNA passenger strand-enriched exosomes mediate cardiomyocyte hypertrophy. J Clin Invest, 124(5):2136-2146.

[5]BaracYD, EmrichF, Krutzwakd-JosefsonE, et al., 2017. The ubiquitin-proteasome system: a potential therapeutic target for heart failure. J Heart Lung Transplant, 36(7):708-714.

[6]BlankesteijnWM, van de SchansVAM, ter HorstP, et al., 2008. The Wnt/frizzled/GSK-3β pathway: a novel therapeutic target for cardiac hypertrophy. Trends Pharmacol Sci, 29(4):175-180.

[7]BogiatziC, HackamDG, McLeodAI, et al., 2014. Secular trends in ischemic stroke subtypes and stroke risk factors. Stroke, 45(11):3208-3213.

[8]ChenJL, ChoppM, 2018. Exosome therapy for stroke. Stroke, 49(5):1083-1090.

[9]ChungS, KimTH, UhmJS, et al., 2020. Stroke and systemic embolism and other adverse outcomes of heart failure with preserved and reduced ejection fraction in patients with atrial fibrillation (from the COmparison Study of Drugs for symptom control and complication prEvention of Atrial Fibrillation [CODE-AF]). Am J Cardiol, 125(1):68-75.

[10]ClelandJGF, FindlayI, JafriS, et al., 2004. The Warfarin/Aspirin study in heart failure (WASH): a randomized trial comparing antithrombotic strategies for patients with heart failure. Am Heart J, 148(1):157-164.

[11]CokkinosDV, HaralabopoulosGC, KostisJB, et al., 2006. Efficacy of antithrombotic therapy in chronic heart failure: the HELAS study. Eur J Heart Fail, 8(4):428-432.

[12]di TullioMR, QianM, ThompsonJLP, et al., 2016. Left ventricular ejection fraction and risk of stroke and cardiac events in heart failure: data from the warfarin versus aspirin in reduced ejection fraction trial. Stroke, 47(8):2031-2037.

[13]DichgansM, PulitSL, RosandJ, 2019. Stroke genetics: discovery, biology, and clinical applications. Lancet Neurol, 18(6):587-599.

[14]DingHY, XieYN, DongQ, et al., 2019. Roles of hyaluronan in cardiovascular and nervous system disorders. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 20(5):428-436.

[15]GaoY, GongYL, XiaL, et al., 2019. Simulation of inter atrial block based on a human atrial model. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 20(4):300-309.

[16]García-BerrocosoT, PalàE, ConsegalM, et al., 2020. Cardioembolic ischemic stroke gene expression fingerprint in blood: a systematic review and verification analysis. Transl Stroke Res, 11(3):326-336.

[17]GBD 2015 Mortality and Causes of Death Collaborators, 2016. Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980-2015: a systematic analysis for the global burden of disease study 2015. Lancet, 388(10053): 1459-1544.

[18]GentlemanR, CareyV, HuberW, et al., 2021. genefilter: methods for filtering genes from high-throughput experiments. Bioconductor version: Release (3.13).

[19]HahnVS, KnutsdottirH, LuoX, et al., 2021. Myocardial gene expression signatures in human heart failure with preserved ejection fraction. Circulation, 143(2):120-134.

[20]HorvathS, DongJ, 2008. Geometric interpretation of gene coexpression network analysis. PLoS Comput Biol, 4(8):e1000117.

[21]IrizarryRA, HobbsB, CollinF, et al., 2003. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics, 4(2):249-264.

[22]JankyR, VerfaillieA, ImrichováH, et al., 2014. iRegulon: from a gene list to a gene regulatory network using large motif and track collections. PLoS Comput Biol, 10(7):e1003731.

[23]JassalB, MatthewsL, ViteriG, et al., 2020. The reactome pathway knowledgebase. Nucleic Acids Res, 48(D1):D498-D503.

[24]JicklingGC, XuHC, StamovaB, et al., 2010. Signatures of cardioembolic and large-vessel ischemic stroke. Ann Neurol, 68(5):681-692.

[25]KamelH, HealeyJS, 2017. Cardioembolic stroke. Circ Res, 120(3):514-526.

[26]KanehisaM, SatoY, 2020. KEGG mapper for inferring cellular functions from protein sequences. Protein Sci, 29(1):28-35.

[27]KangSH, KimJ, ParkJJ, et al., 2017. Risk of stroke in congestive heart failure with and without atrial fibrillation. Int J Cardiol, 248:182-187.

[28]KotechaD, BanerjeeA, LipGYH, 2015. Increased stroke risk in atrial fibrillation patients with heart failure: does ejection fraction matter? Stroke, 46(3):608-609.

[29]LeekJT, JohnsonWE, ParkerHS, et al., 2012. The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics, 28(6):882-883.

[30]LiT, QinJJ, YangX, et al., 2017. The ubiquitin E3 ligase TRAF6 exacerbates ischemic stroke by ubiquitinating and activating Rac1. J Neurosci, 37(50):12123-12140.

[31]LiuZH, MaCG, GuJH, et al., 2019. Potential biomarkers of acute myocardial infarction based on weighted gene co-expression network analysis. BioMed Eng OnLine, 18:9.

[32]MalikR, DichgansM, 2018. Challenges and opportunities in stroke genetics. Cardiovasc Res, 114(9):1226-1240.

[33]MalikR, ChauhanG, TraylorM, et al., 2018. Multiancestry genome-wide association study of 52 0000 subjects identifies 32 loci associated with stroke and stroke subtypes. Nat Genet, 50(4):524-537.

[34]MassieBM, CollinsJF, AmmonSE, et al., 2009. Randomized trial of warfarin, aspirin, and clopidogrel in patients with chronic heart failure: the Warfarin and Antiplatelet Therapy in Chronic Heart Failure (WATCH) trial. Circulation, 119(12):1616-1624.

[35]MischieAN, ChioncelV, DrocI, et al., 2013. Anticoagulation in patients with dilated cardiomyopathy, low ejection fraction, and sinus rhythm: back to the drawing board. Cardiovasc Ther, 31(5):298-302.

[36]MurtaghB, SmallingRW, 2006. Cardioembolic stroke. Curr Atheroscler Rep, 8(4):310-316.

[37]NiuXW, ZhangJJ, ZhangLL, et al., 2019. Weighted gene co-expression network analysis identifies critical genes in the development of heart failure after acute myocardial infarction. Front Genet, 10:1214.

[38]PeiG, ChenL, ZhangW, 2017. WGCNA application to proteomic and metabolomic data analysis. Methods Enzymol, 585:135-158.

[39]PuLY, WangM, LiKX, et al., 2020. Identification micro-RNAs functional modules and genes of ischemic stroke based on weighted gene co-expression network analysis (WGCNA). Genomics, 112(4):2748-2754.

[40]PullicinoP, HommaS, 2010. Stroke in heart failure: atrial fibrillation revisited? J Stroke Cerebrovasc Dis, 19(1):1-2.

[41]RaghowR, 2016. An ‘omics’ perspective on cardiomyopathies and heart failure. Trends Mol Med, 22(9):813-827.

[42]RanjanP, KumariR, VermaSK, 2019. Cardiac fibroblasts and cardiac fibrosis: precise role of exosomes. Front Cell Dev Biol, 7:318.

[43]RitchieME, PhipsonB, WuD, et al., 2015. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res, 43(7):e47.

[44]RivkinE, AlmeidaSM, CeccarelliDF, et al., 2013. The linear ubiquitin-specific deubiquitinase gumby regulates angiogenesis. Nature, 498(7454):318-324.

[45]SchonerA, TyrrellC, WuM, et al., 2015. Endocardial endothelial dysfunction progressively disrupts initially anti then pro-thrombotic pathways in heart failure mice. PLoS ONE, 10(11):e0142940.

[46]ShannonP, MarkielA, OzierO, et al., 2003. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res, 13(11):2498-2504.

[47]SimmondsSJ, CuijpersI, HeymansS, et al., 2020. Cellular and molecular differences between HFpEF and HFrEF: a step ahead in an improved pathological understanding. Cells, 9(1):242.

[48]StanglA, ElliottPR, Pinto-FernandezA, et al., 2019. Regulation of the endosomal SNX27-retromer by OTULIN. Nat Commun, 10:4320.

[49]StruijsJN, van GenugtenMLL, SMAAEvers, et al., 2006. Future costs of stroke in the Netherlands: the impact of stroke services. Int J Technol Assess Health Care, 22(4):518-524.

[50]TamaiSI, ImaizumiK, KurabayashiN, et al., 2014. Neuroprotective role of the basic leucine zipper transcription factor NFIL3 in models of amyotrophic lateral sclerosis. J Biol Chem, 289(3):1629-1638.

[51]The Gene Ontology Consortium, 2019. The Gene Ontology Resource: 20 years and still going strong. Nucleic Acids Res, 47(D1):D330-D338.

[52]ThomasI, EncisoSilvaJ, SchlueterM, et al., 2016. Anticoagulation therapy and NOACs in heart failure. In: Bauersachs J, Butler J, Sandner P (Eds.), Heart Failure. Handbook of Experimental Pharmacology, Vol. 243. Springer, Cham, p.515-535.

[53]van de SchansVAM, van den BorneSWM, StrzeleckaAE, et al., 2007. Interruption of Wnt signaling attenuates the onset of pressure overload-induced cardiac hypertrophy. Hypertension, 49(3):473-480.

[54]VelmuruganBK, ChangRL, Marthandam AsokanS, et al., 2018. A minireview of E4BP4/NFIL3 in heart failure. J Cell Physiol, 233(11):8458-8466.

[55]WangM, WangLJ, PuLY, et al., 2020. LncRNAs related key pathways and genes in ischemic stroke by weighted gene co-expression network analysis (WGCNA). Genomics, 112(3):2302-2308.

[56]WeiZZ, ZhangJY, TaylorTM, et al., 2018. Neuroprotective and regenerative roles of intranasal Wnt-3a administration after focal ischemic stroke in mice. J Cereb Blood Flow Metab, 38(3):404-421.

[57]WojcikC, di NapoliM, 2004. Ubiquitin-proteasome system and proteasome inhibition: new strategies in stroke therapy. Stroke, 35(6):1506-1518.

[58]XuHB, QinWY, HuX, et al., 2018. Lentivirus-mediated overexpression of OTULIN ameliorates microglia activation and neuroinflammation by depressing the activation of the NF-‍κB signaling pathway in cerebral ischemia/reperfusion rats. J Neuroinflammation, 15:83.

[59]YangPC, 2018. Induced pluripotent stem cell (IPSC)-derived exosomes for precision medicine in heart failure. Circ Res, 122(5):661-663.

[60]YipAM, HorvathS, 2007. Gene network interconnectedness and the generalized topological overlap measure. BMC Bioinformatics, 8:22.

[61]ZhangZG, ChoppM, 2016. Exosomes in stroke pathogenesis and therapy. J Clin Invest, 126(4):1190-1197.

[62]ZhouLY, WangY, WangK, et al., 2019. Potential therapeutic drugs for ischemic stroke based on bioinformatics analysis. Int J Neurosci, 129(11):1098-1102.

[63]ZhouYY, ZhouB, PacheL, et al., 2019. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun, 10:1523.

[64]ZhuWH, NanYN, WangSQ, et al., 2019. Bioinformatics analysis of gene expression profiles of sex differences in ischemic stroke. Biomed Res Int, 2019:2478453.

[65]ZouRJ, ZhangDE, LvL, et al., 2019. Bioinformatic gene analysis for potential biomarkers and therapeutic targets of atrial fibrillation-related stroke. J Transl Med, 17:45.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2022 Journal of Zhejiang University-SCIENCE