Full Text:   <820>

Summary:  <238>

Suppl. Mater.: 

CLC number: 

On-line Access: 2023-03-10

Received: 2022-04-17

Revision Accepted: 2022-09-06

Crosschecked: 2023-03-13

Cited: 0

Clicked: 1845

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Yanran WU

https://orcid.org/0000-0003-0816-5240

Sen LI

https://orcid.org/0000-0003-3297-6270

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2023 Vol.24 No.3 P.221-231

http://doi.org/10.1631/jzus.B2200221


Aerobic glycolysis in colon cancer is repressed by naringin via the HIF1Α pathway


Author(s):  Guangtao PAN, Ping ZHANG, Aiying CHEN, Yu DENG, Zhen ZHANG, Han LU, Aoxun ZHU, Cong ZHOU, Yanran WU, Sen LI

Affiliation(s):  Yancheng TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Yancheng 224000, China; more

Corresponding email(s):   lisentome728@hotmail.com, wuyanran196512@163.com

Key Words:  Colon cancer, Naringin, Hypoxia inducible factor-1α, (HIF1Α, ), Enolase 2 (ENO2), Glycolysis, Metabolic reprogramming


Guangtao PAN, Ping ZHANG, Aiying CHEN, Yu DENG, Zhen ZHANG, Han LU, Aoxun ZHU, Cong ZHOU, Yanran WU, Sen LI. Aerobic glycolysis in colon cancer is repressed by naringin via the HIF1Α pathway[J]. Journal of Zhejiang University Science B, 2023, 24(3): 221-231.

@article{title="Aerobic glycolysis in colon cancer is repressed by naringin via the HIF1Α pathway",
author="Guangtao PAN, Ping ZHANG, Aiying CHEN, Yu DENG, Zhen ZHANG, Han LU, Aoxun ZHU, Cong ZHOU, Yanran WU, Sen LI",
journal="Journal of Zhejiang University Science B",
volume="24",
number="3",
pages="221-231",
year="2023",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B2200221"
}

%0 Journal Article
%T Aerobic glycolysis in colon cancer is repressed by naringin via the HIF1Α pathway
%A Guangtao PAN
%A Ping ZHANG
%A Aiying CHEN
%A Yu DENG
%A Zhen ZHANG
%A Han LU
%A Aoxun ZHU
%A Cong ZHOU
%A Yanran WU
%A Sen LI
%J Journal of Zhejiang University SCIENCE B
%V 24
%N 3
%P 221-231
%@ 1673-1581
%D 2023
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B2200221

TY - JOUR
T1 - Aerobic glycolysis in colon cancer is repressed by naringin via the HIF1Α pathway
A1 - Guangtao PAN
A1 - Ping ZHANG
A1 - Aiying CHEN
A1 - Yu DENG
A1 - Zhen ZHANG
A1 - Han LU
A1 - Aoxun ZHU
A1 - Cong ZHOU
A1 - Yanran WU
A1 - Sen LI
J0 - Journal of Zhejiang University Science B
VL - 24
IS - 3
SP - 221
EP - 231
%@ 1673-1581
Y1 - 2023
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B2200221


Abstract: 
metabolic reprogramming is a common phenomenon in cancer, with aerobic glycolysis being one of its important characteristics. Hypoxia-inducible factor-1α (HIF1Α;) is thought to play an important role in aerobic glycolysis. Meanwhile, naringin is a natural flavanone glycoside derived from grapefruits and many other citrus fruits. In this work, we identified glycolytic genes related to HIF1Α by analyzing the colon cancer database. The analysis of extracellular acidification rate and cell function verified the regulatory effects of HIF1Α overexpression on glycolysis, and the proliferation and migration of colon cancer cells. Moreover, naringin was used as an inhibitor of colon cancer cells to illustrate its effect on HIF1Α function. The results showed that the HIF1Α and enolase 2 (ENO2) levels in colon cancer tissues were highly correlated, and their high expression indicated a poor prognosis for colon cancer patients. Mechanistically, HIF1Α directly binds to the DNA promoter region and upregulates the transcription of ENO2; ectopic expression of ENO2 increased aerobic glycolysis in colon cancer cells. Most importantly, we found that the appropriate concentration of naringin inhibited the transcriptional activity of HIF1Α, which in turn decreased aerobic glycolysis in colon cancer cells. Generally, naringin reduces glycolysis in colon cancer cells by reducing the transcriptional activity of HIF1Α and the proliferation and invasion of colon cancer cells. This study helps to elucidate the relationship between colon cancer progression and glucose metabolism, and demonstrates the efficacy of naringin in the treatment of colon cancer.

柚皮苷通过HIF1A通路抑制结肠癌的有氧糖酵解

潘广涛1,张平2,陈爱莹3, 邓宇2,张臻1,卢翰1,朱奥旬1,周聪2,吴嫣然4,李森5
1南京中医药大学附属盐城中医院,中国盐城市,224000
2湖北中医药大学,中国武汉市,430000
3南京中医药大学,中国南京市,210033
4华中科技大学同济医学院附属同济医院中西医结合科,中国武汉市,430000
5华中科技大学同济医学院附属协和医院药学部,中国武汉市,430000
概要:代谢重编程是癌症中一种常见的现象,而有氧糖酵解是其重要特征之一。缺氧诱导因子1亚基(HIF1Α)被认为在有氧糖酵解中发挥重要作用。柚皮苷是一种从葡萄柚和柑橘类水果中提取的天然的黄酮糖苷。在本研究中,我们通过分析结肠癌数据库,确定了与HIF1Α相关的糖酵解基因。通过进行细胞外酸化率和细胞功能的实验,证实了过表达HIF1Α对糖酵解以及结肠癌细胞增殖和迁移的调控作用。此外,我们用柚皮苷作为结肠癌细胞的抑制剂来阐明其对HIF1Α功能的影响。结果显示,结肠癌组织中HIF1Α和烯醇酶-2(ENO2)水平高度相关,其高表达提示结肠癌患者预后较差。HIF1Α直接与DNA启动子区域结合,上调ENO2的转录;而ENO2的异常表达增加了结肠癌细胞的有氧糖酵解水平。最重要的是,一定浓度的柚皮苷抑制了HIF1Α的转录活性,从而降低了结肠癌细胞的有氧糖酵解水平。总之,柚皮苷通过降低HIF1Α的转录活性来减少结肠癌细胞的糖酵解以及结肠癌细胞的增殖和侵袭。本研究有助于阐明结肠癌的进展与糖代谢之间的关系,并证明柚皮苷对结肠癌的治疗效果。

关键词:结肠癌;柚皮苷;缺氧诱导因子1亚基(HIF1Α);烯醇酶-2(ENO2);糖酵解;代谢重编程

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]AdemosunAO, ObohG, PassamontiS, et al., 2015. Inhibition of metalloproteinase and proteasome activities in colon cancer cells by citrus peel extracts. J Basic Clin Physiol Pharmacol, 26(5):471-477.

[2]AhmadSS, GlatzleJ, BajaeiferK, et al., 2013. Phosphoglycerate kinase 1 as a promoter of metastasis in colon cancer. Int J Oncol, 43(2):586-590.

[3]AndréT, de GramontA, VernereyD, et al., 2015. Adjuvant fluorouracil, leucovorin, and oxaliplatin in stage II to III colon cancer: updated 10-year survival and outcomes according to BRAF mutation and mismatch repair status of the MOSAIC study. J Clin Oncol, 33(35):4176-4187.

[4]AndreouD, SteenNE, JørgensenKN, et al., 2021. Lower circulating neuron-specific enolase concentrations in adults and adolescents with severe mental illness. Psychol Med, published online.

[5]AnsariB, AschnerM, HussainY, et al., 2022. Suppression of colorectal carcinogenesis by naringin. Phytomedicine, 96:153897.

[6]CartwrightTH, 2012. Treatment decisions after diagnosis of metastatic colorectal cancer. Clin Colorectal Cancer, 11(3):155-166.

[7]ChenR, QiQL, WangMT, et al., 2016. Therapeutic potential of naringin: an overview. Pharm Biol, 54(12):3203-3210.

[8]DenlingerCS, BarsevickAM, 2009. The challenges of colorectal cancer survivorship. J Natl Compr Canc Netw, 7(8):883-894.

[9]DienstmannR, SalazarR, TaberneroJ, 2015. Personalizing colon cancer adjuvant therapy: selecting optimal treatments for individual patients. J Clin Oncol, 33(16):1787-1796.

[10]DuX, ZhangJ, LiuL, et al., 2022. A novel anticancer property of Lycium barbarum polysaccharide in triggering ferroptosis of breast cancer cells. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 23(4):286-299.

[11]GopinathK, SudhandiranG, 2012. Naringin modulates oxidative stress and inflammation in 3-nitropropionic acid-induced neurodegeneration through the activation of nuclear factor-erythroid 2-related factor-2 signalling pathway. Neuroscience, 227:134-143.

[12]HabauzitV, SaccoSM, Gil-IzquierdoA, et al., 2011. Differential effects of two citrus flavanones on bone quality in senescent male rats in relation to their bioavailability and metabolism. Bone, 49(5):1108-1116.

[13]HsuPP, SabatiniDM, 2008. Cancer cell metabolism: Warburg and beyond. Cell, 134(5):703-707.

[14]HuHL, ZhuWW, QinJ, et al., 2017. Acetylation of PGK1 promotes liver cancer cell proliferation and tumorigenesis. Hepatology, 65(2):515-528.

[15]JiangXY, ChenZ, ZhuJP, et al., 2022. E2F1 promotes Warburg effect and cancer progression via upregulating ENO2 expression in Ewing sarcoma. Mol Med Rep, 26(1):237.

[16]KimDI, LeeSJ, LeeSB, et al., 2008. Requirement for Ras/Raf/ERK pathway in naringin-induced G1-cell-cycle arrest via p21WAF1 expression. Carcinogenesis, 29(9):‍1701-1709.

[17]KimJ, JinH, ZhaoJC, et al., 2017. FOXA1 inhibits prostate cancer neuroendocrine differentiation. Oncogene, 36(28):4072-4080.

[18]KimJW, DangCV, 2005. Multifaceted roles of glycolytic enzymes. Trends Biochem Sci, 30(3):142-150.

[19]KoppenolWH, BoundsPL, DangCV, 2011. Otto Warburg’s contributions to current concepts of cancer metabolism. Nat Rev Cancer, 11(5):325-337.

[20]LiHZ, YangB, HuangJ, et al., 2013. Naringin inhibits growth potential of human triple-negative breast cancer cells by targeting β‍-catenin signaling pathway. Toxicol Lett, 220(3):219-228.

[21]LiuDS, MaoYM, ChenC, et al., 2020. Expression patterns and clinical significances of ENO2 in lung cancer: an analysis based on Oncomine database. Ann Transl Med, 8(10):639.

[22]LuoYL, ZhangCC, LiPB, et al., 2012. Naringin attenuates enhanced cough, airway hyperresponsiveness and airway inflammation in a guinea pig model of chronic bronchitis induced by cigarette smoke. Int Immunopharmacol, 13(3):301-307.

[23]MillerKD, NogueiraL, MariottoAB, et al., 2019. Cancer treatment and survivorship statistics, 2019. CA Cancer J Clin, 69(5):363-385.

[24]RajedadramA, PinKY, LingSK, et al., 2021. Hydroxychavicol, a polyphenol from Piper betle leaf extract, induces cell cycle arrest and apoptosis in TP53-resistant HT-29 colon cancer cells. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 22(2):112-122.

[25]RamzyA, ElSafyS, ElshokyHA, et al., 2023. Drugless nanoparticles tune-up an array of intertwined pathways contributing to immune checkpoint signaling and metabolic reprogramming in triple-negative breast cancer. Biomed Mater, 18:015023.

[26]SchwartzL, SeyfriedT, AlfaroukKO, et al., 2017. Out of Warburg effect: an effective cancer treatment targeting the tumor specific metabolism and dysregulated pH. Semin Cancer Biol, 43:134-138.

[27]SohMA, GarrettSH, SomjiS, et al., 2011. Arsenic, cadmium and neuron specific enolase (ENO2, γ‍-enolase) expression in breast cancer. Cancer Cell Int, 11:41.

[28]SunBY, LiuYQ, HeDH, et al., 2021. Traditional Chinese medicines and their active ingredients sensitize cancer cells to TRAIL-induced apoptosis. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 22(3):190-203.

[29]TaiebJ, le MalicotK, ShiQ, et al., 2017. Prognostic value of BRAF and KRAS mutations in MSI and MSS stage III colon cancer. J Natl Cancer Inst, 109(5):djw272.

[30]VanamalaJ, LeonardiT, PatilBS, et al., 2006. Suppression of colon carcinogenesis by bioactive compounds in grapefruit. Carcinogenesis, 27(6):1257-1265.

[31]vander HeidenMG, CantleyLC, ThompsonCB, 2009. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science, 324(5930):1029-1033.

[32]WangDM, YanJQ, ChenJ, et al., 2015. Naringin improves neuronal insulin signaling, brain mitochondrial function, and cognitive function in high-fat diet-induced obese mice. Cell Mol Neurobiol, 35(7):1061-1071.

[33]WarburgO, WindF, NegeleinE, 1927. The metabolism of tumors in the body. J Gen Physiol, 8(6):519-530.

[34]YuLL, LuMY, JiaDY, et al., 2017. Modeling the genetic regulation of cancer metabolism: interplay between glycolysis and oxidative phosphorylation. Cancer Res, 77(7):1564-1574.

[35]YukimotoR, NishidaN, HataT, et al., 2021. Specific activation of glycolytic enzyme enolase 2 in BRAF V600E-mutated colorectal cancer. Cancer Sci, 112(7):2884-2894.

[36]ZhangJZ, GaoWY, LiuZ, et al., 2014. Systematic analysis of main constituents in rat biological samples after oral administration of the methanol extract of fructus aurantii by HPLC-ESI-MS/MS. Iran J Pharm Res, 13(2):493503.

[37]ZhengY, WuC, YangJM, et al., 2020. Insulin-like growth factor 1-induced enolase 2 deacetylation by HDAC3 promotes metastasis of pancreatic cancer. Sig Transduct Target Ther, 5:53.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE