Full Text:   <473>

Summary:  <178>

Suppl. Mater.: 

CLC number: 

On-line Access: 2023-02-05

Received: 2022-05-20

Revision Accepted: 2022-10-08

Crosschecked: 2023-02-09

Cited: 0

Clicked: 525

Citations:  Bibtex RefMan EndNote GB/T7714


Dajing XIA


Yihua WU


-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2023 Vol.24 No.2 P.143-156


USH2A mutation and specific driver mutation subtypes are associated with clinical efficacy of immune checkpoint inhibitors in lung cancer

Author(s):  Dexin YANG, Yuqin FENG, Haohua LU, Kelie CHEN, Jinming XU, Peiwei LI, Tianru WANG, Dajing XIA, Yihua WU

Affiliation(s):  Department of Toxicology of School of Public Health, and Department of Gynecologic Oncology of Womens Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China; more

Corresponding email(s):   georgewu@zju.edu.cn, dxia@zju.edu.cn

Key Words:  Immune checkpoint inhibitor (ICI), Lung cancer, Usher syndrome type-2A (USH2A) missense mutation, Kirsten rat sarcoma viral oncogene homolog G12C (KRASG12C) mutation combined with tumor protein P53 (TP53) mutation, Epidermal growth factor receptor (EGFR) mutation

Dexin YANG, Yuqin FENG, Haohua LU, Kelie CHEN, Jinming XU, Peiwei LI, Tianru WANG, Dajing XIA, Yihua WU. USH2A mutation and specific driver mutation subtypes are associated with clinical efficacy of immune checkpoint inhibitors in lung cancer[J]. Journal of Zhejiang University Science B, 2023, 24(2): 143-156.

@article{title="USH2A mutation and specific driver mutation subtypes are associated with clinical efficacy of immune checkpoint inhibitors in lung cancer",
author="Dexin YANG, Yuqin FENG, Haohua LU, Kelie CHEN, Jinming XU, Peiwei LI, Tianru WANG, Dajing XIA, Yihua WU",
journal="Journal of Zhejiang University Science B",
publisher="Zhejiang University Press & Springer",

%0 Journal Article
%T USH2A mutation and specific driver mutation subtypes are associated with clinical efficacy of immune checkpoint inhibitors in lung cancer
%A Dexin YANG
%A Yuqin FENG
%A Haohua LU
%A Kelie CHEN
%A Jinming XU
%A Peiwei LI
%A Tianru WANG
%A Dajing XIA
%A Yihua WU
%J Journal of Zhejiang University SCIENCE B
%V 24
%N 2
%P 143-156
%@ 1673-1581
%D 2023
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B2200292

T1 - USH2A mutation and specific driver mutation subtypes are associated with clinical efficacy of immune checkpoint inhibitors in lung cancer
A1 - Dexin YANG
A1 - Yuqin FENG
A1 - Haohua LU
A1 - Kelie CHEN
A1 - Jinming XU
A1 - Peiwei LI
A1 - Tianru WANG
A1 - Dajing XIA
A1 - Yihua WU
J0 - Journal of Zhejiang University Science B
VL - 24
IS - 2
SP - 143
EP - 156
%@ 1673-1581
Y1 - 2023
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B2200292

This study aimed to identify subtypes of genomic variants associated with the efficacy of immune checkpoint inhibitors (ICIs) by conducting systematic literature search in electronic databases up to May 31, 2021. The main outcomes including overall survival (OS), progression-free survival (PFS), objective response rate (ORR), and durable clinical benefit (DCB) were correlated with tumor genomic features. A total of 1546 lung cancer patients with available genomic variation data were included from 14 studies. The kirsten rat sarcoma viral oncogene homolog G12C (KRASG12C) mutation combined with tumor protein P53 (TP53) mutation revealed the promising efficacy of ICI therapy in these patients. Furthermore, patients with epidermal growth factor receptor (EGFR) classical activating mutations (including EGFRL858R and EGFRΔ19) exhibited worse outcomes to ICIs in OS (adjusted hazard ratio (HR), 1.40; 95% confidence interval (CI), 1.01‍‒‍1.95; P=0.0411) and PFS (adjusted HR, 1.98; 95% CI, 1.49‍‒‍2.63; P<0.0001), while classical activating mutations with EGFRT790M showed no difference compared to classical activating mutations without EGFRT790M in OS (adjusted HR, 0.96; 95% CI, 0.48‍‒‍1.94; P=0.9157) or PFS (adjusted HR, 0.72; 95% CI, 0.39‍‒‍1.35; P=0.3050). Of note, for patients harboring the Usher syndrome type-2A (USH2A) missense mutation, correspondingly better outcomes were observed in OS (adjusted HR, 0.52; 95% CI, 0.32‍‒‍0.82; P=0.0077), PFS (adjusted HR, 0.51; 95% CI, 0.38‍‒‍0.69; P<0.0001), DCB (adjusted odds ratio (OR), 4.74; 95% CI, 2.75‍‒‍8.17; P<0.0001), and ORR (adjusted OR, 3.45; 95% CI, 1.88‍‒‍6.33; P<0.0001). Our findings indicated that, USH2A missense mutations and the KRASG12C mutation combined with TP53 mutation were associated with better efficacy and survival outcomes, but EGFR classical mutations irrespective of combination with EGFRT790M showed the opposite role in the ICI therapy among lung cancer patients. Our findings might guide the selection of precise targets for effective immunotherapy in the clinic.


杨德馨1,4, 冯愉沁1, 鲁昊骅1, 陈柯列1, 徐金明2, 李培伟5, 王天如6, 夏大静1, 吴一华1,3
1浙江大学医学院公共卫生学院毒理学系, 附属妇产医院妇科肿瘤科, 中国杭州市, 310058
2浙江大学附属第一医院胸外科, 中国杭州市, 310003
3中国医学科学院肿瘤病理智能分型和精准治疗创新单元(2019RU042), 中国杭州市, 310058
4德克萨斯大学安德森癌症中心, 德克萨斯大学健康科学中心麦戈文医学院生物化学与分子生物学系, 美国休斯顿, TX 77030
5浙江大学附属第二医院消化内科,中国杭州市, 310009
6多伦多大学达拉拉娜公共卫生学院流行病学系, 加拿大多伦多, M5S 2E8
概要:本研究以探索与免疫检查点抑制剂(ICIs)效果有关联的基因突变亚型为目标,进行了系统文献检索(电子数据库截至2021年5月31日)。与肿瘤基因特征相关联的主要结局事件包括:总生存期、无进展生存期、客观反应率、持久临床获益。我们从14项研究中总计提取了1546个有基因突变数据的肺癌患者,发现ICIs治疗在KRASG12C联合TP53双突变的患者中有更好的疗效,而在携带EGFR经典激活突变(包括EGFRL585REGFRΔ19)的患者中的效果则截然相反:总生存期(调整后HR, 1.40; 95% CI, 1.01-1.95; P=0.0411),无进展生存期(调整后HR, 1.98; 95% CI, 1.49-2.63; P<0.0001)。另外,ICIs治疗在EGFR经典突变联合EGFRT790M双突变患者与仅有EGFR经典突变的患者在总生存期(调整后HR, 0.96; 95% CI, 0.48-1.94; P=0.9157)与无进展生存期(调整后HR, 0.72; 95% CI, 0.39-1.35; P=0.3050)中均无明显差异。更重要的是,我们发现ICIs在携带USH2A错义突变的患者中可能有更好的疗效:总生存期(调整后HR, 0.52; 95% CI, 0.32-0.82; P=0.0077),无进展生存期(调整后HR, 0.51; 95% CI, 0.38-0.69; P<0.0001),持久临床获益(调整后OR, 4.74; 95% CI, 2.75-8.17; P<0.0001)与客观反应率(调整后OR, 3.45; 95% CI, 1.88-6.33; P<0.0001)。综上,我们的研究发现在使用ICIs疗法的肺癌患者中,USH2A错义突变、KRASG12C联合TP53双突变与更好的疗效和生存结局有关,而EGFR经典突变无论是否合并EGFRT790M突变都预示着不良结局,我们的结果可能会对在肿瘤ICIs的精准治疗方案提供新的依据和靶标。

关键词:免疫检查点抑制剂(ICIs); 肺癌; USH2A错义突变; KRASG12CTP53双突变; EGFR突变

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article


[1]Abou AlaiwiS, NassarAH, XieWL, et al., 2020. Mammalian SWI/SNF complex genomic alterations and immune checkpoint blockade in solid tumors. Cancer Immunol Res, 8(8):1075-1084.

[2]AddeoA, BannaGL, WeissGJ, 2019. Tumor mutation burden—from hopes to doubts. JAMA Oncol, 5(7):934-935.

[3]AnagnostouV, NiknafsN, MarroneK, et al., 2020. Multimodal genomic features predict outcome of immune checkpoint blockade in non-small-cell lung cancer. Nat Cancer, 1(1):99-111.

[4]ArbourKC, RizviH, PlodkowskiAJ, et al., 2021. Treatment outcomes and clinical characteristics of patients with KRAS-G12C-mutant non-small cell lung cancer. Clin Cancer Res, 27(8):2209-2215.

[5]AssounS, Theou-AntonN, NguenangM, et al., 2019. Association of TP53 mutations with response and longer survival under immune checkpoint inhibitors in advanced non-small-cell lung cancer. Lung Cancer, 132:65-71.

[6]BenthamR, LitchfieldK, WatkinsTBK, et al., 2021. Using DNA sequencing data to quantify T cell fraction and therapy response. Nature, 597(7877):555-560.

[7]BrahmerJR, 2013. Harnessing the immune system for the treatment of non-small-cell lung cancer. J Clin Oncol, 31(8):1021-1028.

[8]CaiWJ, ZhouDP, WuWB, et al., 2018. MHC class II restricted neoantigen peptides predicted by clonal mutation analysis in lung adenocarcinoma patients: implications on prognostic immunological biomarker and vaccine design. BMC Genomics, 19:582.

[9]CanonJ, RexK, SaikiAY, et al., 2019. The clinical KRAS(G12C) inhibitor AMG 510 drives anti-tumour immunity. Nature, 575(7781):217-223.

[10]ChoJW, ParkS, KimG, et al., 2021. Dysregulation of TFH-B-TRM lymphocyte cooperation is associated with unfavorable anti-PD-1 responses in EGFR-mutant lung cancer. Nat Commun, 12:6068.

[11]DongZY, ZhongWZ, ZhangXC, et al., 2017. Potential predictive value of TP53 and KRAS mutation status for response to PD-1 blockade immunotherapy in lung adenocarcinoma. Clin Cancer Res, 23(12):3012-3024.

[12]EisenhauerEA, TherasseP, BogaertsJ, et al., 2009. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer, 45(2):228-247.

[13]EudyJD, WestonMD, YaoSF, et al., 1998. Mutation of a gene encoding a protein with extracellular matrix motifs in Usher syndrome type IIa. Science, 280(5370):‍1753-1757.

[14]FangWF, MaYX, YinJC, et al., 2019. Comprehensive genomic profiling identifies novel genetic predictors of response to anti-PD-(L)1 therapies in non-small cell lung cancer. Clin Cancer Res, 25(16):5015-5026.

[15]FangWF, JinHX, ZhouHQ, et al., 2021. Intratumoral heterogeneity as a predictive biomarker in anti-PD-(L)1 therapies for non-small cell lung cancer. Mol Cancer, 20:37.

[16]FrigolaJ, NavarroA, CarbonellC, et al., 2021. Molecular profiling of long-term responders to immune checkpoint inhibitors in advanced non-small cell lung cancer. Mol Oncol, 15(4):887-900.

[17]GainorJF, ShawAT, SequistLV, et al., 2016. EGFR mutations and ALK rearrangements are associated with low response rates to PD-1 pathway blockade in non-small cell lung cancer: a retrospective analysis. Clin Cancer Res, 22(18):4585-4593.

[18]GandaraDR, PaulSM, KowanetzM, et al., 2018. Blood-based tumor mutational burden as a predictor of clinical benefit in non-small-cell lung cancer patients treated with atezolizumab. Nat Med, 24(9):1441-1448.

[19]GaoG, LiaoWT, MaQZ, et al., 2020. KRAS G12D mutation predicts lower TMB and drives immune suppression in lung adenocarcinoma. Lung Cancer, 149:41-45.

[20]GuZG, EilsR, SchlesnerM, 2016. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics, 32(18):2847-2849.

[21]GaoZR, LingXY, ShiCY, et al., 2022. Tumor immune checkpoints and their associated inhibitors. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 23(10):823-843.

[22]HastingsK, YuHA, WeiW, et al., 2019. EGFR mutation subtypes and response to immune checkpoint blockade treatment in non-small-cell lung cancer. Ann Oncol, 30(8):1311-1320.

[23]HataA, KatakamiN, NanjoS, et al., 2017. Programmed death-ligand 1 expression and T790M status in EGFR-mutant non-small cell lung cancer. Lung Cancer, 111:182-189.

[24]HellmannMD, NathansonT, RizviH, et al., 2018. Genomic features of response to combination immunotherapy in patients with advanced non-small-cell lung cancer. Cancer Cell, 33(5):843-852.e4.

[25]JeansonA, TomasiniP, Souquet-BressandM, et al., 2019. Efficacy of immune checkpoint inhibitors in KRAS-mutant non-small cell lung cancer (NSCLC). J Thorac Oncol, 14(6):1095-1101.

[26]JiaQZ, WangJ, HeN, et al., 2019. Titin mutation associated with responsiveness to checkpoint blockades in solid tumors. JCI Insight, 4(10):e127901.

[27]JiaQZ, ChiuL, WuSX, et al., 2020. Tracking neoantigens by personalized circulating tumor DNA sequencing during checkpoint blockade immunotherapy in non-small cell lung cancer. Adv Sci (Weinh), 7(9):1903410.

[28]KumagaiS, KoyamaS, NishikawaH, 2021. Antitumour immunity regulated by aberrant ERBB family signalling. Nat Rev Cancer, 21(3):181-197.

[29]LeeCK, ManJ, LordS, et al., 2017. Checkpoint inhibitors in metastatic EGFR-mutated non-small cell lung cancer—a meta-analysis. J Thorac Oncol, 12(2):403-407.

[30]LiuCM, ZhengSF, JinRS, et al., 2020. The superior efficacy of anti-PD-1/PD-L1 immunotherapy in KRAS-mutant non-small cell lung cancer that correlates with an inflammatory phenotype and increased immunogenicity. Cancer Lett, 470:95-105.

[31]MazieresJ, DrilonA, LusqueA, et al., 2019. Immune checkpoint inhibitors for patients with advanced lung cancer and oncogenic driver alterations: results from the IMMUNOTARGET registry. Ann Oncol, 30(8):1321-1328.

[32]MiaoDN, MargolisCA, VokesNI, et al., 2018. Genomic correlates of response to immune checkpoint blockade in microsatellite-stable solid tumors. Nat Genet, 50(9):1271-1281.

[33]ModingEJ, LiuYF, NabetBY, et al., 2020. Circulating tumor DNA dynamics predict benefit from consolidation immunotherapy in locally advanced non-small-cell lung cancer. Nat Cancer, 1(2):176-183.

[34]OscanoaJ, SivapalanL, GadaletaE, et al., 2020. SNPnexus: a web server for functional annotation of human genome sequence variation (2020 update). Nucleic Acids Res, 48(W1):W185-W192.

[35]PenderA, TitmussE, PleasanceED, et al., 2021. Genome and transcriptome biomarkers of response to immune checkpoint inhibitors in advanced solid tumors. Clin Cancer Res, 27(1):202-212.

[36]PengDJ, KryczekI, NagarshethN, et al., 2015. Epigenetic silencing of TH1-type chemokines shapes tumour immunity and immunotherapy. Nature, 527(7577):249-253.

[37]ReussJE, AnagnostouV, CottrellTR, et al., 2020. Neoadjuvant nivolumab plus ipilimumab in resectable non-small cell lung cancer. J Immunother Cancer, 8(2):e001282.

[38]RivoltaC, BersonEL, DryjaTP, 2002. Paternal uniparental heterodisomy with partial isodisomy of chromosome 1 in a patient with retinitis pigmentosa without hearing loss and a missense mutation in the Usher syndrome type II gene USH2A. Arch Ophthalmol, 120(11):1566-1571.

[39]RizviH, Sanchez-VegaF, LaK, et al., 2018. Molecular determinants of response to anti-programmed cell death (PD)-1 and anti-programmed death-ligand 1 (PD-L1) blockade in patients with non-small-cell lung cancer profiled with targeted next-generation sequencing. J Clin Oncol, 36(7):633-641.

[40]RizviNA, HellmannMD, SnyderA, et al., 2015. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science, 348(6230):124-128.

[41]SabapathyK, LaneDP, 2018. Therapeutic targeting of p53: all mutants are equal, but some mutants are more equal than others. Nat Rev Clin Oncol, 15(1):13-30.

[42]SamsteinRM, LeeCH, ShoushtariAN, et al., 2019. Tumor mutational load predicts survival after immunotherapy across multiple cancer types. Nat Genet, 51(2):202-206.

[43]SequistLV, WaltmanBA, Dias-SantagataD, et al., 2011. Genotypic and histological evolution of lung cancers acquiring resistance to egfr inhibitors. Sci Transl Med, 3(75):75ra26.

[44]StevenA, FisherSA, RobinsonBW, 2016. Immunotherapy for lung cancer. Respirology, 21(5):821-833.

[45]SugiyamaE, TogashiY, TakeuchiY, et al., 2020. Blockade of EGFR improves responsiveness to PD-1 blockade in EGFR-mutated non-small cell lung cancer. Sci Immunol, 5(43):eaav3937.

[46]SunH, LiuSY, ZhouJY, et al., 2020. Specific TP53 subtype as biomarker for immune checkpoint inhibitors in lung adenocarcinoma. EBioMedicine, 60:102990.

[47]SunYY, LiL, YaoWC, et al., 2021. USH2A mutation is associated with tumor mutation burden and antitumor immunity in patients with colon adenocarcinoma. Front Genet, 12:762160.

[48]SzolekA, SchubertB, MohrC, et al., 2014. OptiType: precision HLA typing from next-generation sequencing data. Bioinformatics, 30(23):3310-3316.

[49]TalevichE, ShainAH, BottonT, et al., 2016. CNVkit: genome-wide copy number detection and visualization from targeted DNA sequencing. PLoS Comput Biol, 12(4):e1004873.

[50]ToualbiL, TomsM, MoosajeeM, 2020. USH2A-retinopathy: from genetics to therapeutics. Exp Eye Res, 201:108330.

[51]TsaoMS, KerrKM, KockxM, et al., 2018. PD-L1 immunohistochemistry comparability study in real-life clinical samples: results of blueprint phase 2 project. J Thorac Oncol, 13(9):1302-1311.

[52]WestonMD, EudyJD, FujitaS, et al., 2000. Genomic structure and identification of novel mutations in Usherin, the gene responsible for Usher syndrome type IIa. Am J Hum Genet, 66(4):1199-1210.

[53]WuSG, ShihJY, 2018. Management of acquired resistance to EGFR TKI-targeted therapy in advanced non-small cell lung cancer. Mol Cancer, 17:38.

[54]YarchoanM, HopkinsA, JaffeeEM, 2017. Tumor mutational burden and response rate to PD-1 inhibition. N Engl J Med, 377(25):2500-2501.

[55]YuHA, ArcilaME, RekhtmanN, et al., 2013. Analysis of tumor specimens at the time of acquired resistance to EGFR-TKI therapy in 155 patients with EGFR-mutant lung cancers. Clin Cancer Res, 19(8):2240-2247.

[56]YuYF, LinDG, LiAL, et al., 2020. Association of immune checkpoint inhibitor therapy with survival in patients with cancers with MUC16 variants. JAMA Netw Open, 3(6):e205837.

[57]ZhangL, HanXH, ShiYK, 2020. Association of MUC16 mutation with response to immune checkpoint inhibitors in solid tumors. JAMA Netw Open, 3(8):e2013201.

[58]ZhuGS, RenD, LeiX, et al., 2021. Mutations associated with no durable clinical benefit to immune checkpoint blockade in non-s-cell lung cancer. Cancers (Basel), 13(6):1397.

Open peer comments: Debate/Discuss/Question/Opinion


Please provide your name, email address and a comment

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2023 Journal of Zhejiang University-SCIENCE