Full Text:   <2328>

Summary:  <1815>

CLC number: R318.08

On-line Access: 2018-12-03

Received: 2018-02-23

Revision Accepted: 2018-08-20

Crosschecked: 2018-11-21

Cited: 0

Clicked: 4641

Citations:  Bibtex RefMan EndNote GB/T7714


Gang Feng


-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2018 Vol.19 No.12 P.910-923


Novel nano-microspheres containing chitosan, hyaluronic acid, and chondroitin sulfate deliver growth and differentiation factor-5 plasmid for osteoarthritis gene therapy

Author(s):  Zhu Chen, Shang Deng, De-chao Yuan, Kang Liu, Xiao-cong Xiang, Liang Cheng, Dong-qin Xiao, Li Deng, Gang Feng

Affiliation(s):  Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, the Second Clinical Medical College of North Sichuan Medical College, Nanchong 637000, China; more

Corresponding email(s):   fenggangncch@163.com

Key Words:  Osteoarthritis, Gene therapy, Chitosan, Hyaluronic acid, Chondroitin sulfate, Growth and differentiation factor-5 (GDF-5) plasmid

Zhu Chen, Shang Deng, De-chao Yuan, Kang Liu, Xiao-cong Xiang, Liang Cheng, Dong-qin Xiao, Li Deng, Gang Feng. Novel nano-microspheres containing chitosan, hyaluronic acid, and chondroitin sulfate deliver growth and differentiation factor-5 plasmid for osteoarthritis gene therapy[J]. Journal of Zhejiang University Science B, 2018, 19(12): 910-923.

@article{title="Novel nano-microspheres containing chitosan, hyaluronic acid, and chondroitin sulfate deliver growth and differentiation factor-5 plasmid for osteoarthritis gene therapy",
author="Zhu Chen, Shang Deng, De-chao Yuan, Kang Liu, Xiao-cong Xiang, Liang Cheng, Dong-qin Xiao, Li Deng, Gang Feng",
journal="Journal of Zhejiang University Science B",
publisher="Zhejiang University Press & Springer",

%0 Journal Article
%T Novel nano-microspheres containing chitosan, hyaluronic acid, and chondroitin sulfate deliver growth and differentiation factor-5 plasmid for osteoarthritis gene therapy
%A Zhu Chen
%A Shang Deng
%A De-chao Yuan
%A Kang Liu
%A Xiao-cong Xiang
%A Liang Cheng
%A Dong-qin Xiao
%A Li Deng
%A Gang Feng
%J Journal of Zhejiang University SCIENCE B
%V 19
%N 12
%P 910-923
%@ 1673-1581
%D 2018
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1800095

T1 - Novel nano-microspheres containing chitosan, hyaluronic acid, and chondroitin sulfate deliver growth and differentiation factor-5 plasmid for osteoarthritis gene therapy
A1 - Zhu Chen
A1 - Shang Deng
A1 - De-chao Yuan
A1 - Kang Liu
A1 - Xiao-cong Xiang
A1 - Liang Cheng
A1 - Dong-qin Xiao
A1 - Li Deng
A1 - Gang Feng
J0 - Journal of Zhejiang University Science B
VL - 19
IS - 12
SP - 910
EP - 923
%@ 1673-1581
Y1 - 2018
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1800095

Objective: To construct a novel non-viral vector loaded with growth and differentiation factor-5 (GDF-5) plasmid using chitosan, hyaluronic acid, and chondroitin sulfate for osteoarthritis (OA) gene therapy. Methods: Nano-microspheres (NMPs) were prepared by mixing chitosan, hyaluronic acid, and chondroitin sulfate. GDF-5 plasmid was encapsulated in the NMPs through electrostatic adsorption. The basic characteristics of the NMPs were observed, and then they were co-cultured with chondrocytes to observe their effects on extracellular matrix (ECM) protein expression. Finally, NMPs loaded with GDF-5 were injected into the articular cavities of rabbits to observe their therapeutic effects on OA in vivo. Results: NMPs exhibited good physicochemical properties and low cytotoxicity. Their average diameter was (0.61±0.20) μm, and encapsulation efficiency was (38.19±0.36)%. According to Cell Counting Kit-8 (CCK-8) assay, relative cell viability was 75%–99% when the total weight of NMPs was less than 560 μg. Transfection efficiency was (62.0±2.1)% in a liposome group, and (60.0±1.8)% in the NMP group. There was no significant difference between the two groups (P>0.05). Immunohistochemical staining results suggested that NMPs can successfully transfect chondrocytes and stimulate ECM protein expression in vitro. Compared with the control groups, the NMP group significantly promoted the expression of chondrocyte ECM in vivo (P<0.05), as shown by analysis of the biochemical composition of chondrocyte ECM. When NMPs were injected into OA model rabbits, the expression of ECM proteins in chondrocytes was significantly promoted and the progression of OA was slowed down. Conclusions: Based on these data, we think that these NMPs with excellent physicochemical and biological properties could be promising non-viral vectors for OA gene therapy.


方法:在55 °C下,按不同比例混合壳聚糖、透明质酸钠、硫酸软骨素和GDF-5质粒,利用静电吸附原理制备携载GDF-5质粒的三元纳米微球.分别利用扫描电镜和激光粒度散射仪测试微球的形貌和粒径;利用凝胶电泳检测质粒与微球的结合情 况;利用CCK-8检测微球的细胞毒性.将携载GDF-5质粒的微球与软骨细胞共培养,并将脂质体和空载组作为对照组,在预定的时间点通过免疫荧光染色、免疫组化染色以及生化成分分析,观察微球对软骨细胞外基质分泌情况的影响.最后将该纳米微球注射到骨关节炎模型兔体内,通过大体观察、苏木精-伊红(H&E)染色、免疫荧光染色和免疫组化分析该微球对骨关节炎的作用.


Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article


[1]Abate M, Pulcini D, di Iorio A, et al., 2010. Viscosupplementation with intra-articular hyaluronic acid for treatment of osteoarthritis in the elderly. Curr Pharm Des, 16(6):631-640.

[2]Adachi N, Ochi M, Deie M, et al., 2006. Lateral compartment osteoarthritis of the knee after meniscectomy treated by the transplantation of tissue-engineered cartilage and osteochondral plug. Arthroscopy, 22(1):107-112.

[3]Alcaraz MJ, Megías J, García-Arnandis I, et al., 2010. New molecular targets for the treatment of osteoarthritis. Biochem Pharmacol, 80(1):13-21.

[4]Al-Qadi S, Alatorre-Meda M, Zaghloul EM, et al., 2013. Chitosan-hyaluronic acid nanoparticles for gene silencing: the role of hyaluronic acid on the nanoparticles’ formation and activity. Colloids Surf B Biointerfaces, 103:615-623.

[5]Andriacchi TP, Favre J, 2014. The nature of in vivo mechanical signals that influence cartilage health and progression to knee osteoarthritis. Curr Rheumatol Rep, 16(11):463.

[6]Bor G, Mytych J, Zebrowski J, et al., 2016. Cytotoxic and cytostatic side effects of chitosan nanoparticles as a non-viral gene carrier. Int J Pharm, 513(1-2):431-437.

[7]Bravo-Anaya LM, Soltero JFA, Rinaudo M, 2016. DNA/ chitosan electrostatic complex. Int J Biol Macromol, 88: 345-353.

[8]Bucher C, Gazdhar A, Benneker LM, et al., 2013. Nonviral gene delivery of growth and differentiation factor 5 to human mesenchymal stem cells injected into a 3D bovine intervertebral disc organ culture system. Stem Cells Int, 2013:326828.

[9]Carrillo C, Suñé JM, Pérez-Lozano P, et al., 2014. Chitosan nanoparticles as non-viral gene delivery systems: determination of loading efficiency. Biomed Pharmacother, 68(6):775-783.

[10]Chow G, Knudson CB, Homandberg G, et al., 1995. Increased expression of CD44 in bovine articular chondrocytes by catabolic cellular mediators. J Biol Chem, 270(46):27734-27741.

[11]Coleman CM, Scheremeta BH, Boyce AT, et al., 2011. Delayed fracture healing in growth differentiation factor 5-deficient mice: a pilot study. Clin Orthop Relat Res, 469(10):2915-2924.

[12]Feng G, Wan YQ, Balian G, et al., 2008. Adenovirus-mediated expression of growth and differentiation factor-5 promotes chondrogenesis of adipose stem cells. Growth Factors, 26(3):132-142.

[13]Goldring SR, Goldring MB, 2016. Changes in the osteochondral unit during osteoarthritis: structure, function and cartilage-bone crosstalk. Nat Rev Rheumatol, 12(11):632-644.

[14]Guo HQ, Maher SA, Torzilli PA, 2015. A biphasic finite element study on the role of the articular cartilage superficial zone in confined compression. J Biomech, 48(1):166-170.

[15]Hagiwara K, Nakata M, Koyama Y, et al., 2012. The effects of coating pDNA/chitosan complexes with chondroitin sulfate on physicochemical characteristics and cell transfection. Biomaterials, 33(29):7251-7260.

[16]Hulth A, Lindberg L, Telhag H, 1970. Experimental osteoarthritis in rabbits. Preliminary report. Acta Orthop Scand, 41(5):522-530.

[17]Jevotovsky DS, Alfonso AR, Einhorn TA, et al., 2018. Osteoarthritis and stem cell therapy in humans: a systematic review. Osteoarthrit Cartil, 26(6):711-729.

[18]Kaderli S, Boulocher C, Pillet E, et al., 2015. A novel biocompatible hyaluronic acid-chitosan hybrid hydrogel for osteoarthrosis therapy. Int J Pharm, 483(1-2):158-168.

[19]Kellgren JH, Lawrence JS, 1957. Radiological assessment of osteo-arthrosis. Ann Rheum Dis, 16(4):494-502.

[20]Kumar SR, Markusic DM, Biswas M, et al., 2016. Clinical development of gene therapy: results and lessons from recent successes. Mol Ther Methods Clin Dev, 3:16034.

[21]Liu K, Chen Z, Luo XW, et al., 2015. Determination of the potential of induced pluripotent stem cells to differentiate into mouse nucleus pulposus cells in vitro. Genet Mol Res, 14(4):12394-12405.

[22]Lu HD, Zhao HQ, Wang K, et al., 2011. Novel hyaluronic acid-chitosan nanoparticles as non-viral gene delivery vectors targeting osteoarthritis. Int J Pharm, 420(2):358-365.

[23]Lu HD, Dai YH, Lv LL, et al., 2014. Chitosan-graft-polyethylenimine/DNA nanoparticles as novel non-viral gene delivery vectors targeting osteoarthritis. PLoS ONE, 9(1):e84703.

[24]Lukashev AN, Zamyatnin AA Jr, 2016. Viral vectors for gene therapy: current state and clinical perspectives. Biochemistry (Mosc), 81(7):700-708.

[25]Luo XW, Liu K, Chen Z, et al., 2016. Adenovirus-mediated GDF-5 promotes the extracellular matrix expression in degenerative nucleus pulposus cells. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 17(1):30-42.

[26]Madry H, Cucchiarini M, 2016. Gene therapy for human osteoarthritis: principles and clinical translation. Expert Opin Biol Ther, 16(3):331-346.

[27]Majzoub RN, Ewert KK, Safinya CR, 2016. Cationic liposome-nucleic acid nanoparticle assemblies with applications in gene delivery and gene silencing. Philos Trans A Math Phys Eng Sci, 374(2072):20150129.

[28]McAlindon TE, Driban JB, Lo GH, 2012. Osteoarthritis year 2011 in review: clinical. Osteoarthritis Cartilage, 20(3):197-200.

[29]Murphy MK, Huey DJ, Hu JC, et al., 2015. TGF-β1, GDF-5, and BMP-2 stimulation induces chondrogenesis in expanded human articular chondrocytes and marrow-derived stromal cells. Stem Cells, 33(3):762-773.

[30]Piera-Velazquez S, Jimenez SA, Stokes DG, 2002. Increased life span of human osteoarthritic chondrocytes by exogenous expression of telomerase. Arthrit Rheum, 46(3):683-693.

[31]Ramesh Kumar D, Saravana Kumar P, Gandhi MR, et al., 2016. Delivery of chitosan/dsRNA nanoparticles for silencing of wing development vestigial (vg) gene in Aedes aegypti mosquitoes. Int J Biol Macromol, 86:89-95.

[32]Robinson WH, Lepus CM, Wang Q, et al., 2016. Low-grade inflammation as a key mediator of the pathogenesis of osteoarthritis. Nat Rev Rheumatol, 12(10):580-592.

[33]van den Borne MPJ, Raijmakers NJH, Vanlauwe J, et al., 2007. International Cartilage Repair Society (ICRS) and Oswestry macroscopic cartilage evaluation scores validated for use in Autologous Chondrocyte Implantation (ACI) and microfracture. Osteoarthritis Cartilage, 15(12):1397-1402.

[34]Vinatier C, Merceron C, Guicheux J, 2016. Osteoarthritis: from pathogenic mechanisms and recent clinical developments to novel prospective therapeutic options. Drug Discov Today, 21(12):1932-1937.

[35]Zhang XQ, Zhang H, Yin LQ, et al., 2016. A pH-sensitive nanosystem based on carboxymethyl chitosan for tumor-targeted delivery of daunorubicin. J Biomed Nanotechnol, 12(8):1688-1698.

Open peer comments: Debate/Discuss/Question/Opinion


Please provide your name, email address and a comment

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE