Full Text:   <621>

Summary:  <250>

Suppl. Mater.: 

CLC number: 

On-line Access: 2023-05-15

Received: 2022-08-04

Revision Accepted: 2023-02-08

Crosschecked: 2023-05-16

Cited: 0

Clicked: 732

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Hao YAN

https://orcid.org/0000-0002-1854-786X

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2023 Vol.24 No.5 P.458-462

http://doi.org/10.1631/jzus.B2200393


Network controllability analysis of awake and asleep conditions in the brain


Author(s):  Yan HE, Zhiqiang YAN, Wenjia ZHANG, Jie DONG, Hao YAN

Affiliation(s):  Key Laboratory for Artificial Intelligence and Cognitive Neuroscience of Language, Xi’an International Studies University, Xi’an 710121, China; more

Corresponding email(s):   haoyan@xisu.edu.cn

Key Words:  Intracranial EEG, Phase-locking value, Neural oscillation, Functional connectivity, Network controllability


Share this article to: More <<< Previous Article|

Yan HE, Zhiqiang YAN, Wenjia ZHANG, Jie DONG, Hao YAN. Network controllability analysis of awake and asleep conditions in the brain[J]. Journal of Zhejiang University Science B, 2023, 24(5): 458-462.

@article{title="Network controllability analysis of awake and asleep conditions in the brain",
author="Yan HE, Zhiqiang YAN, Wenjia ZHANG, Jie DONG, Hao YAN",
journal="Journal of Zhejiang University Science B",
volume="24",
number="5",
pages="458-462",
year="2023",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B2200393"
}

%0 Journal Article
%T Network controllability analysis of awake and asleep conditions in the brain
%A Yan HE
%A Zhiqiang YAN
%A Wenjia ZHANG
%A Jie DONG
%A Hao YAN
%J Journal of Zhejiang University SCIENCE B
%V 24
%N 5
%P 458-462
%@ 1673-1581
%D 2023
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B2200393

TY - JOUR
T1 - Network controllability analysis of awake and asleep conditions in the brain
A1 - Yan HE
A1 - Zhiqiang YAN
A1 - Wenjia ZHANG
A1 - Jie DONG
A1 - Hao YAN
J0 - Journal of Zhejiang University Science B
VL - 24
IS - 5
SP - 458
EP - 462
%@ 1673-1581
Y1 - 2023
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B2200393


Abstract: 
The difference between sleep and wakefulness is critical for human health. Sleep takes up one third of our lives and remains one of the most mysterious conditions; it plays an important role in memory consolidation and health restoration. Distinct neural behaviors take place under awake and asleep conditions, according to neuroimaging studies. While disordered transitions between wakefulness and sleep accompany brain disease, further investigation of their specific characteristics is required. In this study, the difference is objectively quantified by means of network controllability. We propose a new pipeline using a public intracranial stereo-electroencephalography (stereo-EEG) dataset to unravel differences in the two conditions in terms of system neuroscience. Because intracranial stereo-EEG records neural oscillations covering large-scale cerebral areas, it offers the highest temporal resolution for recording neural behaviors. After EEG preprocessing, the EEG signals are band-passed into sub-slow (0.1‍–‍1 Hz), delta (1‍–‍4 Hz), theta (4‍–‍8 Hz), alpha (8‍–‍13 Hz), beta (13‍–‍30 Hz), and gamma (30‍–‍45 Hz) band oscillations. Then, dynamic functional connectivity is extracted from time-windowed EEG neural oscillations through phase-locking value (PLV) and non-overlapping sliding time windows. Next, average and modal network controllability are implemented on these time-varying brain networks. Based on this preliminary study, it appears that significant differences exist in the dorsolateral frontal-parietal network (FPN), salience network (SN), and default-mode network (DMN). The combination of network controllability and dynamic functional networks offers new insight for characterizing distinctions between awake and asleep stages in the brain. In other words, network controllability captures the underlying brain dynamics under both awake and asleep conditions.

大脑清醒和睡眠状态下的网络可控性分析

何艳1,闫志强2,张文嘉1,董洁1,燕浩1,3,4
1西安外国语大学,人工智能与语言认知神经科学重点实验室,中国西安市,710121
2空军军医大学,西京医院神经外科,中国西安市,710032
3西安电子科技大学,外国语学院,中国西安市,710121
4深圳市神经科学研究院,语言与大脑研究中心,中国深圳市,518107
摘要:睡眠和清醒之间的差异对人类的健康至关重要,清醒和睡眠之间的转换紊乱伴随脑部疾病,因此需要深入研究其具体特征。本研究引入网络可控性揭示大脑脑电活动中频率成分的功能特异性。具体来说,我们采用一个公开的颅内立体脑电图数据集。首先,记录受试者清醒和睡眠条件下的脑电信号,经过降噪、伪迹去除等预处理方法,通过带通滤波提取亚慢波(0.1~1 Hz)、δ(1~4 Hz)、θθ(4~8 Hz)、α(8~13 Hz)、β(13~30 Hz)和γ(30~45 Hz)波段振荡。其次,利用锁相值(PLV)和不重叠滑动时间窗从时间窗脑电神经振荡中提取动态功能连通性。最后,在这些时变大脑网络上计算平均和模态网络的可控性。初步结果显示,清醒和睡眠状态下,不同频段脑电活动在额顶网络(FPN)、显著网络(SN)和默认模式网络(DMN)存在显著差异,即不同频率成分的脑电信号以不同网络控制策略参与大脑清醒和睡眠。网络可控性揭示了清醒和睡眠条件下的潜在大脑动力学,网络可控性和动态功能网络的结合为表征大脑清醒和睡眠阶段的区别提供了新的度量方法。

关键词:颅内立体脑电;相位锁定值;神经振荡;功能连接;网络可控性

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]AndrillonT, BurnsA, MackayT, et al., 2021. Predicting lapses of attention with sleep-like slow waves. Nat Commun, 12:3657.

[2]BeynelL, DengLF, CrowellCA, et al., 2020. Structural controllability predicts functional patterns and brain stimulation benefits associated with working memory. J Neurosci, 40(35):6770-6778.

[3]ChengW, RollsET, RuanHT, et al., 2018. Functional connectivities in the brain that mediate the association between depressive problems and sleep quality. JAMA Psychiatry, 75(10):1052-1061.

[4]CornblathEJ, TangE, BaumGL, et al., 2019. Sex differences in network controllability as a predictor of executive function in youth. NeuroImage, 188:122-134.

[5]DoellingKB, AssaneoMF, 2021. Neural oscillations are a start toward understanding brain activity rather than the end. PLoS Biol, 19(5):e3001234.

[6]GuS, PasqualettiF, CieslakM, et al., 2015. Controllability of structural brain networks. Nat Commun, 6:8414.

[7]IoannidesAA, 2018. Neurofeedback and the neural representation of self: lessons from awake state and sleep. Front Hum Neurosci, 12:142.

[8]KenettYN, MedagliaJD, BeatyRE, et al., 2018. Driving the brain towards creativity and intelligence: a network control theory analysis. Neuropsychologia, 118(Pt A):79-90.

[9]KinreichS, PodlipskyI, JamshyS, et al., 2014. Neural dynamics necessary and sufficient for transition into pre-sleep induced by EEG NeuroFeedback. NeuroImage, 97:19-28.

[10]KlimeschW, 2018. The frequency architecture of brain and brain body oscillations: an analysis. Eur J Neurosci, 48(7):2431-2453.

[11]LiaoZL, TanYF, QiuYJ, et al., 2018. Interhemispheric functional connectivity for Alzheimer’s disease and amnestic mild cognitive impairment based on the triple network model. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 19(12):924-934.

[12]MedagliaJD, HarveyDY, KelkarAS, et al., 2021. Language tasks and the network control role of the left inferior frontal gyrus. eNeuro, 8(5):ENEURO.0382-20.2021.

[13]ParkesL, MooreTM, CalkinsME, et al., 2021. Network controllability in transmodal cortex predicts positive psychosis spectrum symptoms. Biol Psychiatry, 90(6):409-418.

[14]SarassoS, D'AmbrosioS, FecchioM, et al., 2020. Local sleep-like cortical reactivity in the awake brain after focal injury. Brain, 143(12):3672-3684.

[15]TangBQ, ZhangWJ, DengSK, et al., 2022. Age-associated network controllability changes in first episode drug-naïve schizophrenia. BMC Psychiatry, 22:26.

[16]WuY, ZhaoWR, ChenXY, et al., 2020. Aberrant awake spontaneous brain activity in obstructive sleep apnea: a review focused on resting-state EEG and resting-state fMRI. Front Neurol, 11:768.

[17]XueSW, LeeTW, GuoYH, 2018. Spontaneous activity in medial orbitofrontal cortex correlates with trait anxiety in healthy male adults. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 19(8):643-653.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE