Full Text:   <733>

Summary:  <194>

CLC number: 

On-line Access: 2024-03-01

Received: 2023-02-14

Revision Accepted: 2023-06-24

Crosschecked: 2024-03-06

Cited: 0

Clicked: 710

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Sebastian LEPTIHN

https://orcid.org/0000-0002-4847-4622

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2024 Vol.25 No.3 P.181-196

http://doi.org/10.1631/jzus.B2300101


Defense and anti-defense mechanisms of bacteria and bacteriophages


Author(s):  Xiaoqing WANG, Sebastian LEPTIHN

Affiliation(s):  School of Medicine, Lishui University, Lishui 323000, China; more

Corresponding email(s):   11818142@zju.edu.cn

Key Words:  Bacteriophage, Phage resistance, Abortive infection, Phage therapy


Share this article to: More |Next Article >>>

Xiaoqing WANG, Sebastian LEPTIHN. Defense and anti-defense mechanisms of bacteria and bacteriophages[J]. Journal of Zhejiang University Science B, 2024, 25(3): 181-196.

@article{title="Defense and anti-defense mechanisms of bacteria and bacteriophages",
author="Xiaoqing WANG, Sebastian LEPTIHN",
journal="Journal of Zhejiang University Science B",
volume="25",
number="3",
pages="181-196",
year="2024",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B2300101"
}

%0 Journal Article
%T Defense and anti-defense mechanisms of bacteria and bacteriophages
%A Xiaoqing WANG
%A Sebastian LEPTIHN
%J Journal of Zhejiang University SCIENCE B
%V 25
%N 3
%P 181-196
%@ 1673-1581
%D 2024
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B2300101

TY - JOUR
T1 - Defense and anti-defense mechanisms of bacteria and bacteriophages
A1 - Xiaoqing WANG
A1 - Sebastian LEPTIHN
J0 - Journal of Zhejiang University Science B
VL - 25
IS - 3
SP - 181
EP - 196
%@ 1673-1581
Y1 - 2024
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B2300101


Abstract: 
In the post-antibiotic era, the overuse of antimicrobials has led to a massive increase in antimicrobial resistance, leaving medical doctors few or no treatment options to fight infections caused by superbugs. The use of bacteriophages is a promising alternative to treat infections, supplementing or possibly even replacing antibiotics. Using phages for therapy is possible, since these bacterial viruses can kill bacteria specifically, causing no harm to the normal flora. However, bacteria have developed a multitude of sophisticated and complex ways to resist infection by phages, including abortive infection and the clustered regularly interspersed short palindromic repeats (CRISPR)/CRISPR-associated (Cas) system. Phages also can evolve and acquire new anti-defense strategies to continue predation. An in-depth exploration of both defense and anti-defense mechanisms would contribute to optimizing phage therapy, while we would also gain novel insights into the microbial world. In this paper, we summarize recent research on bacterial phage resistance and phage anti-defense mechanisms, as well as collaborative win-win systems involving both virus and host.

细菌和噬菌体间的防御与反防御机制

汪晓庆1,Sebastian LEPTIHN2,3
1丽水学院医学院,中国丽水市,323000
2爱丁堡大学医学院,医学与兽医学院,英国爱丁堡,EH8 9JZ
3HMU健康与医科大学,德国埃尔福特,99084
摘要:在后抗生素时代,因抗菌药过度使用产生的超级细菌引发了严峻的耐药形势。噬菌体能特异性地杀灭细菌,且不会破坏正常菌群,可以作为一种有前景的感染治疗途径,以补充甚至取代抗生素。细菌进化出多种复杂的抵抗噬菌体感染的方式,包括流产感染和CRISPR-Cas系统,噬菌体同样也进化出反防御的策略去继续感染细菌。对细菌防御和噬菌体反防御机制的深入探索将有助于噬菌体治疗策略的优化及增加我们对微生物世界认知。为此,本文对近年来细菌抵抗噬菌体的防御机制、噬菌体的反防御机制及病毒与宿主协同共赢系统等方面的研究进展进行了综述。

关键词:噬菌体;噬菌体抗性;流产感染;噬菌体治疗

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]AndersonCW, EignerJ, 1971. Breakdown and exclusion of superinfecting T-even bacteriophage in Escherichia coli. J Virol, 8(6):869-886.

[2]AndoH, LemireS, PiresDP, et al., 2015. Engineering modular viral scaffolds for targeted bacterial population editing. Cell Syst, 1(3):187-196.

[3]AndresD, HankeC, BaxaU, et al., 2010. Tailspike interactions with lipopolysaccharide effect DNA ejection from phage P22 particles in vitro. J Biol Chem, 285(47):36768-36775.

[4]AthukoralageJS, McMahonSA, ZhangCY, et al., 2020. An anti-CRISPR viral ring nuclease subverts type III CRISPR immunity. Nature, 577(7791):572-575.

[5]BarrJJ, 2017. A bacteriophages journey through the human body. Immunol Rev, 279(1):106-122.

[6]Bertozzi SilvaJ, StormsZ, SauvageauD, 2016. Host receptors for bacteriophage adsorption. FEMS Microbiol Lett, 363(4):fnw002.

[7]BishtK, MooreJL, CaprioliRM, et al., 2021. Impact of temperature-dependent phage expression on Pseudomonas aeruginosa biofilm formation. NPJ Biofilms Microbiomes, 7(1):22.

[8]BodnerK, MelkonianAL, CovertMW, 2021. The enemy of my enemy: new insights regarding bacteriophage‒mammalian cell interactions. Trends Microbiol, 29(6):528-541.

[9]Bondy-DenomyJ, PawlukA, MaxwellKL, et al., 2013. Bacteriophage genes that inactivate the CRISPR/Cas bacterial immune system. Nature, 493(7432):429-432.

[10]CaiRP, WuM, ZhangH, et al., 2018. A smooth-type, phage-resistant Klebsiella pneumoniae mutant strain reveals that OmpC is indispensable for infection by phage GH-K3. Appl Environ Microbiol, 84(21):e01585-18.

[11]Carroll-PortilloA, LinHC, 2019. Bacteriophage and the innate immune system: access and signaling. Microorganisms, 7(12):625.

[12]ChevallereauA, PonsBJ, van HouteS, et al., 2022. Interactions between bacterial and phage communities in natural environments. Nat Rev Microbiol, 20(1):49-62.

[13]ChoYH, 2014. Molecular microbiology in antibacterial research. J Microbiol, 52(3):185-187.

[14]CohenD, MelamedS, MillmanA, et al., 2019. Cyclic GMP-AMP signalling protects bacteria against viral infection. Nature, 574(7780):691-695.

[15]de Freitas AlmeidaGM, HoikkalaV, RavanttiJ, et al., 2022. Mucin induces CRISPR-Cas defense in an opportunistic pathogen. Nat Commun, 13:3653.

[16]de JongePA, NobregaFL, BrounsSJJ, et al., 2019. Molecular and evolutionary determinants of bacteriophage host range. Trends Microbiol, 27(1):51-63.

[17]DoronS, MelamedS, OfirG, et al., 2018. Systematic discovery of antiphage defense systems in the microbial pangenome. Science, 359(6379):eaar4120.

[18]DragošA, AndersenAJC, Lozano-AndradeCN, et al., 2021. Phages carry interbacterial weapons encoded by biosynthetic gene clusters. Curr Biol, 31(16):3479-3489.e5.

[19]DulbeccoR, 1952. Mutual exclusion between related phages. J Bacteriol, 63(2):209-217.

[20]DunneM, RupfB, TalaM, et al., 2019. Reprogramming bacteriophage host range through structure-guided design of chimeric receptor binding proteins. Cell Rep, 29(5):‍1336-1350.e4.

[21]FernándezL, GonzálezS, CampeloAB, et al., 2017. Low-level predation by lytic phage phiIPLA-RODI promotes biofilm formation and triggers the stringent response in Staphylococcus aureus. Sci Rep, 7:40965.

[22]FineranPC, GerritzenMJH, Suárez-DiezM, et al., 2014. Degenerate target sites mediate rapid primed CRISPR adaptation. Proc Natl Acad Sci USA, 111(16):E1629-E1638.

[23]GaoHD, ShangZF, ChanSY, et al., 2022. Recent advances in the use of the CRISPR-Cas system for the detection of infectious pathogens. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 23(11):881-898.

[24]GeisingerE, IsbergRR, 2015. Antibiotic modulation of capsular exopolysaccharide and virulence in Acinetobacter baumannii. PLoS Pathog, 11(2):e1004691.

[25]GoldfarbT, SberroH, WeinstockE, et al., 2015. BREX is a novel phage resistance system widespread in microbial genomes. EMBO J, 34(2):169-183.

[26]Gordillo AltamiranoF, ForsythJH, PatwaR, et al., 2021. Bacteriophage-resistant Acinetobacter baumannii are resensitized to antimicrobials. Nat Microbiol, 6(2):157-161.

[27]HirschiM, LuWT, Santiago-FrangosA, et al., 2020. AcrIF9 tethers non-sequence specific dsDNA to the CRISPR RNA-guided surveillance complex. Nat Commun, 11:2730.

[28]HosseinidoustZ, TufenkjiN, van de VenTGM, 2013. Formation of biofilms under phage predation: considerations concerning a biofilm increase. Biofouling, 29(4):457-468.

[29]HussainFA, DubertJ, ElsherbiniJ, et al., 2021. Rapid evolutionary turnover of mobile genetic elements drives bacterial resistance to phages. Science, 374(6566):488-492.

[30]JiaN, PatelDJ, 2021. Structure-based functional mechanisms and biotechnology applications of anti-CRISPR proteins. Nat Rev Mol Cell Biol, 22(8):563-579.

[31]JohnsonAG, WeinT, MayerML, et al., 2022. Bacterial gasdermins reveal an ancient mechanism of cell death. Science, 375(6577):221-225.

[32]KaD, OhH, ParkE, et al., 2020. Structural and functional evidence of bacterial antiphage protection by Thoeris defense system via NAD+ degradation. Nat Commun, 11:2816.

[33]KenyonJJ, HallRM, 2013. Variation in the complex carbohydrate biosynthesis loci of Acinetobacter baumannii genomes. PLoS ONE, 8(4):e62160.

[34]KnirelYA, ShneiderMM, PopovaAV, et al., 2020. Mechanisms of Acinetobacter baumannii capsular polysaccharide cleavage by phage depolymerases. Biochemistry (Mosc), 85(5):567-574.

[35]KooninEV, KrupovicM, 2020. Phages build anti-defence barriers. Nat Microbiol, 5(1):8-9.

[36]KronheimS, Daniel-IvadM, DuanZ, et al., 2018. A chemical defence against phage infection. Nature, 564(7735):283-286.

[37]KrügerDH, SchroederC, 1981. Bacteriophage T3 and bacteriophage T7 virus-host cell interactions. Microbiol Rev, 45(1):9-51.

[38]LabrieSJ, SamsonJE, MoineauS, 2010. Bacteriophage resistance mechanisms. Nat Rev Microbiol, 8(5):317-327.

[39]LeNH, PetersK, EspaillatA, et al., 2020. Peptidoglycan editing provides immunity to Acinetobacter baumannii during bacterial warfare. Sci Adv, 6(30):eabb5614.

[40]LeavittA, YirmiyaE, AmitaiG, et al., 2022. Viruses inhibit TIR gcADPR signalling to overcome bacterial defence. Nature, 611(7935):326-331.

[41]Lees-MillerRG, IwashkiwJA, ScottNE, et al., 2013. A common pathway for O-linked protein-glycosylation and synthesis of capsule in Acinetobacter baumannii. Mol Microbiol, 89(5):816-830.

[42]LeitnerL, McCallinS, KesslerTM, 2021. Bacteriophages: what role may they play in life after spinal cord injury? Spinal Cord, 59(9):967-970.

[43]LeRouxM, LaubMT, 2022. Toxin-antitoxin systems as phage defense elements. Annu Rev Microbiol, 76:21-43.

[44]LiYP, Bondy-DenomyJ, 2021. Anti-CRISPRs go viral: the infection biology of CRISPR-Cas inhibitors. Cell Host Microbe, 29(5):704-714.

[45]LohB, KuhnA, LeptihnS, 2019. The fascinating biology behind phage display: filamentous phage assembly. Mol Microbiol, 111(5):1132-1138.

[46]LohB, ChenJY, ManoharP, et al., 2020. A biological inventory of prophages in A. baumannii genomes reveal distinct distributions in classes, length, and genomic positions. Front Microbiol, 11:579802.

[47]LuMJ, HenningU, 1994. Superinfection exclusion by T-even-type coliphages. Trends Microbiol, 2(4):137-139.

[48]Majkowska-SkrobekG, ŁątkaA, BerisioR, et al., 2016. Capsule-targeting depolymerase, derived from Klebsiella KP36 phage, as a tool for the development of anti-virulent strategy. Viruses, 8(12):324.

[49]MaloneLM, WarringSL, JacksonSA, et al., 2020. A jumbo phage that forms a nucleus-like structure evades CRISPR-Cas DNA targeting but is vulnerable to type III RNA-based immunity. Nat Microbiol, 5(1):48-55.

[50]ManoharP, LohB, AthiraS, et al., 2020. Secondary bacterial infections during pulmonary viral disease: phage therapeutics as alternatives to antibiotics? Front Microbiol, 11:1434.

[51]MaxwellKL, 2019. Bacterial twist to an antiviral defence. Nature, 574(7780):638-639.

[52]McKitterickAC, HaysSG, JohuraFT, et al., 2019. Viral satellites exploit phage proteins to escape degradation of the bacterial host chromosome. Cell Host Microbe, 26(4):504-514.e4.

[53]MeeskeAJ, JiaN, CasselAK, et al., 2020. A phage-encoded anti-CRISPR enables complete evasion of type VI-A CRISPR-Cas immunity. Science, 369(6499):54-59.

[54]MendozaSD, NieweglowskaES, GovindarajanS, et al., 2020. A bacteriophage nucleus-like compartment shields DNA from CRISPR nucleases. Nature, 577(7789):244-248.

[55]MoCY, MathaiJ, RostølJT, et al., 2021. Type III-A CRISPR immunity promotes mutagenesis of staphylococci. Nature, 592(7855):611-615.

[56]MutalikVK, AdlerBA, RishiHS, et al., 2020. High-throughput mapping of the phage resistance landscape in E. coli. PLoS Biol, 18(10):e3000877.

[57]Nasrullah, HussainA, AhmedS, et al., 2022. DNA methylation across the tree of life, from micro to macro-organism. Bioengineered, 13(1):1666-1685.

[58]NguyenS, BakerK, PadmanBS, et al., 2017. Bacteriophage transcytosis provides a mechanism to cross epithelial cell layers. mBio, 8(6):e01874-17.

[59]OfirG, HerbstE, BarozM, et al., 2021. Antiviral activity of bacterial TIR domains via immune signalling molecules. Nature, 600(7887):116-120.

[60]OwenSV, WennerN, DulbergerCL, et al., 2021. Prophages encode phage-defense systems with cognate self-immunity. Cell Host Microbe, 29(11):1620-1633.e8.

[61]PageR, PetiW, 2016. Toxin-antitoxin systems in bacterial growth arrest and persistence. Nat Chem Biol, 12(4):208-214.

[62]PapoulisSE, WilhelmSW, TalmyD, et al., 2021. Nutrient loading and viral memory drive accumulation of restriction modification systems in bloom-forming cyanobacteria. mBio, 12(3):e0087321.

[63]PyneME, Moo-YoungM, ChungDA, et al., 2015. Coupling the CRISPR/Cas9 system with lambda Red recombineering enables simplified chromosomal gene replacement in Escherichia coli. Appl Environ Microbiol, 81(15):‍5103-5114.

[64]QuistadSD, GrasisJA, BarrJJ, et al., 2017. Viruses and the origin of microbiome selection and immunity. ISME J, 11(4):835-840.

[65]RabinovitchA, AviramI, ZaritskyA, 2003. Bacterial debris—an ecological mechanism for coexistence of bacteria and their viruses. J Theor Biol, 224(3):377-383.

[66]RocchiI, EricsonCF, MalterKE, et al., 2019. A bacterial phage tail-like structure kills eukaryotic cells by injecting a nuclease effector. Cell Rep, 28(2):295-301.e4.

[67]RohwerF, SegallAM, 2015. A century of phage lessons. Nature, 528(7580):46-48.

[68]RostølJT, MarraffiniL, 2019. (Ph)ighting phages: how bacteria resist their parasites. Cell Host Microbe, 25(2):‍184-194.

[69]RoussetF, CuiL, SiouveE, et al., 2018. Genome-wide CRISPR-dCas9 screens in E. coli identify essential genes and phage host factors. PLoS Genet, 14(11):e1007749.

[70]SantDG, WoodsLC, BarrJJ, et al., 2021. Host diversity slows bacteriophage adaptation by selecting generalists over specialists. Nat Ecol Evol, 5(3):350-359.

[71]SecorPR, SweereJM, MichaelsLA, et al., 2015. Filamentous bacteriophage promote biofilm assembly and function. Cell Host Microbe, 18(5):549-559.

[72]SeedKD, LazinskiDW, CalderwoodSB, et al., 2013. A bacteriophage encodes its own CRISPR/Cas adaptive response to evade host innate immunity. Nature, 494(7438):‍489-491.

[73]ShkoporovAN, TurkingtonCJ, HillC, 2022. Mutualistic interplay between bacteriophages and bacteria in the human gut. Nat Rev Microbiol, 20(12):737-749.

[74]Simon-BaramH, KleinerD, ShmulevichF, et al., 2021. SAMase of bacteriophage T3 inactivates Escherichia coli’s methionine S-adenosyltransferase by forming heteropolymers. mBio, 12(4):e0124221.

[75]SørensenMCH, van AlphenLB, HarboeA, et al., 2011. Bacteriophage F336 recognizes the capsular phosphoramidate modification of Campylobacter jejuni NCTC11168. J Bacteriol, 193(23):6742-6749.

[76]StaesI, BäckerLE, SimoensK, et al., 2022. Superinfection exclusion factors drive a history-dependent switch from vertical to horizontal phage transmission. Cell Rep, 39(6):110804.

[77]StudierFW, MovvaNR, 1976. SAMase gene of bacteriophage T3 is responsible for overcoming host restriction. J Virol, 19(1):136-145.

[78]SwansonNA, LokareddyRK, LiFL, et al., 2021. Cryo-EM structure of the periplasmic tunnel of T7 DNA-ejectosome at 2.7 Å resolution. Mol Cell, 81(15):3145-3159.e7.

[79]SweereJM, van BelleghemJD, IshakH, et al., 2019. Bacteriophage trigger antiviral immunity and prevent clearance of bacterial infection. Science, 363(6434):eaat9691.

[80]TalN, MillmanA, Stokar-AvihailA, et al., 2022. Bacteria deplete deoxynucleotides to defend against bacteriophage infection. Nat Microbiol, 7(8):1200-1209.

[81]TalyanskyY, NielsenTB, YanJ, et al., 2021. Capsule carbohydrate structure determines virulence in Acinetobacter baumannii. PLoS Pathog, 17(2):e1009291.

[82]TianY, WuM, LiuXX, et al., 2015. Probing the endocytic pathways of the filamentous bacteriophage in live cells using ratiometric pH fluorescent indicator. Adv Healthc Mater, 4(3):413-419.

[83]TurkingtonCJR, MorozovA, ClokieMRJ, et al., 2019. Phage-resistant phase-variant sub-populations mediate herd immunity against bacteriophage invasion of bacterial meta-populations. Front Microbiol, 10:1473.

[84]UnterholznerSJ, PoppenbergerB, RozhonW, 2013. Toxin-antitoxin systems: biology, identification, and application. Mob Genet Elements, 3(5):e26219.

[85]van HouteS, BucklingA, WestraER, 2016. Evolutionary ecology of prokaryotic immune mechanisms. Microbiol Mol Biol Rev, 80(3):745-763.

[86]VarbleA, CampisiE, EulerCW, et al., 2021. Prophage integration into CRISPR loci enables evasion of antiviral immunity in Streptococcus pyogenes. Nat Microbiol, 6(12):1516-1525.

[87]VolozhantsevNV, ShpirtAM, BorzilovAI, et al., 2020. Characterization and therapeutic potential of bacteriophage-encoded polysaccharide depolymerases with β galactosidase activity against Klebsiella pneumoniae K57 capsular type. Antibiotics, 9(11):732.

[88]WahidaA, TangF, BarrJJ, 2021. Rethinking phage-bacteria-eukaryotic relationships and their influence on human health. Cell Host Microbe, 29(5):681-688.

[89]WangCY, TuJG, LiuJ, et al., 2019. Structural dynamics of bacteriophage P22 infection initiation revealed by cryo-electron tomography. Nat Microbiol, 4(6):1049-1056.

[90]WangXQ, LohB, Gordillo AltamiranoF, et al., 2021. Colistin-phage combinations decrease antibiotic resistance in Acinetobacter baumannii via changes in envelope architecture. Emerg Microbes Infect, 10(1):2205-2219.

[91]WestraER, van HouteS, Oyesiku-BlakemoreS, et al., 2015. Parasite exposure drives selective evolution of constitutive versus inducible defense. Curr Biol, 25(8):1043-1049.

[92]WetzelKS, Guerrero-BustamanteCA, DedrickRM, et al., 2021. CRISPY-BRED and CRISPY-BRIP: efficient bacteriophage engineering. Sci Rep, 11:6796.

[93]XieYC, WahabL, GillJJ, 2018. Development and validation of a microtiter plate-based assay for determination of bacteriophage host range and virulence. Viruses, 10(4):189.

[94]YangH, PatelDJ, 2017. Inhibition mechanism of an anti-CRISPR suppressor AcrIIA4 targeting SpyCas9. Mol Cell, 67(1):117-127.e5.

[95]YangJY, FangWW, Miranda-SanchezF, et al., 2021. Degradation of host translational machinery drives tRNA acquisition in viruses. Cell Syst, 12(8):771-779.e5.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE