Full Text:   <3314>

CLC number: TP241

On-line Access: 2012-10-01

Received: 2011-09-01

Revision Accepted: 2012-07-17

Crosschecked: 2012-09-11

Cited: 0

Clicked: 8447

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
1. Reference List
Open peer comments

Journal of Zhejiang University SCIENCE C 2012 Vol.13 No.10 P.769-780


An anthropomorphic controlled hand prosthesis system

Author(s):  Hai Huang, Hong Liu, Nan Li, Li Jiang, Da-peng Yang, Lei Wan, Yong-jie Pang, Gerd Hirzinger

Affiliation(s):  National Key Laboratory of Science and Technology on Autonomous Underwater Vehicle, Harbin Engineering University, Harbin 150001, China; more

Corresponding email(s):   haihus@163.com

Key Words:  Anthropomorphic controller, Prosthetic hand, EMG recognition, Electro-cutaneous sensory feedback

Hai Huang, Hong Liu, Nan Li, Li Jiang, Da-peng Yang, Lei Wan, Yong-jie Pang, Gerd Hirzinger. An anthropomorphic controlled hand prosthesis system[J]. Journal of Zhejiang University Science C, 2012, 13(10): 769-780.

@article{title="An anthropomorphic controlled hand prosthesis system",
author="Hai Huang, Hong Liu, Nan Li, Li Jiang, Da-peng Yang, Lei Wan, Yong-jie Pang, Gerd Hirzinger",
journal="Journal of Zhejiang University Science C",
publisher="Zhejiang University Press & Springer",

%0 Journal Article
%T An anthropomorphic controlled hand prosthesis system
%A Hai Huang
%A Hong Liu
%A Nan Li
%A Li Jiang
%A Da-peng Yang
%A Lei Wan
%A Yong-jie Pang
%A Gerd Hirzinger
%J Journal of Zhejiang University SCIENCE C
%V 13
%N 10
%P 769-780
%@ 1869-1951
%D 2012
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.C1100257

T1 - An anthropomorphic controlled hand prosthesis system
A1 - Hai Huang
A1 - Hong Liu
A1 - Nan Li
A1 - Li Jiang
A1 - Da-peng Yang
A1 - Lei Wan
A1 - Yong-jie Pang
A1 - Gerd Hirzinger
J0 - Journal of Zhejiang University Science C
VL - 13
IS - 10
SP - 769
EP - 780
%@ 1869-1951
Y1 - 2012
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.C1100257

Based on HIT/DLR (Harbin Institute of Technology/Deutsches Zentrum für Luft- und Raumfahrt) prosthetic hand II, an anthropomorphic controller is developed to help the amputees use and perceive the prosthetic hands more like people with normal physiological hands. The core of the anthropomorphic controller is a hierarchical control system. It is composed of a top controller and a low level controller. The top controller has been designed both to interpret the amputee’s intensions through electromyography (EMG) signals recognition and to provide the subject–prosthesis interface control with electro-cutaneous sensory feedback (ESF), while the low level controller is responsible for grasp stability. The control strategies include the EMG control strategy, EMG and ESF closed loop control strategy, and voice control strategy. Through EMG signal recognition, 10 types of hand postures are recognized based on support vector machine (SVM). An anthropomorphic closed loop system is constructed to include the customer, sensory feedback system, EMG control system, and the prosthetic hand, so as to help the amputee perform a more successful EMG grasp. Experimental results suggest that the anthropomorphic controller can be used for multi-posture recognition, and that grasp with ESF is a cognitive dual process with visual and sensory feedback. This process while outperforming the visual feedback process provides the concept of grasp force magnitude during manipulation of objects.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article


[1]Ajiboye, A.B., Weir, R.F.F., 2005. A heuristic fuzzy logic approach to EMG pattern recognition for multifunctional prosthetic control. IEEE Trans. Neur. Syst. Rehabil. Eng., 13(3):280-291.

[2]Antfolk, C., Balkenius, C., Lundborg, G., Rosén, B., Sebelius, F., 2010. Design and technical construction of a tactile display for sensory feedback in a hand prosthesis system. BioMed. Eng. OnLine, 9:50.

[3]Bicchi, A., 2000. Hand for dexterous manipulation and robust grasping: a difficult road toward simplicity. IEEE Trans. Robot. Autom., 16(6):652-662.

[4]Bitzer, S., van der Smagt, P., 2006. Learning EMG Control of a Robotic Hand: Towards Active Prostheses. IEEE Int. Conf. on Robotics and Automation, p.2819-2823.

[5]Burges, C.J.C., 1998. A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Disc., 2(2):121-167.

[6]Castellini, C., van der Smagt, P., 2009. Surface EMG in advanced hand prosthetics. Biol. Cybern., 100(1):35-47.

[7]Clement, R.G.E., Bugler, K.E., Oliver, C.W., 2011. Bionic prosthetic hands: a review of present technology and future aspirations. Surgeon, 9(6):336-340.

[8]Dario, P., Laschi, C., Carrozza, M.C., Guglielmelli, E., Teti, G., Massa, B., Zecca, M., Taddeucci, D., Leoni, F., 2002. An Integrated Approach for the Design and Development of a Grasping and Manipulation System in Humanoid Robotics. IEEE Int. Conf. on Robotics & Automation, 1:1-7.

[9]Davidovics, N.S., Fridman, G.Y., Chiang, B., Della Santina, C.C., 2011. Effects of biphasic current pulse frequency, amplitude, duration, and interphase gap on eye movement responses to prosthetic electrical stimulation of the vestibular nerve. IEEE Trans. Neur. Syst. Rehabil. Eng., 19(1):84-94.

[10]Dechev, N., Cleghorn, W.L., Naumann, S., 2001. Multiple finger, passive adaptive grasp prosthetic hand. Mech. Mach. Theory, 36(10):1157-1173.

[11]Della Santina, C.C., Migliaccio, A.A., Patel, A.H., 2007. A multichannel semicircular canal neural prosthesis using electrical stimulation to restore 3-D vestibular sensation. IEEE Trans. Biomed. Eng., 54(6):1016-1030.

[12]Diftler, M.A., Culbert, C.J., Ambrose, R.O., Platt, R.Jr., Bluethmann, W.J., 2003. Evolution of the NASA/DARPA Robonaut Control System. IEEE Int. Conf. on Robotics and Automation, 2:2543-2548.

[13]Edsinger-Gonzales, A., 2004. Design of a Compliant and Force Sensing Hand for a Humanoid Robot. Proc. Int. Conf. on Intelligent Manipulation and Grasping, p.291-295.

[14]Graupe, D., Salahi, J., Kohn, K., 1982. Multifunction prosthesis and orthosis control via micro-computer identification of temporal pattern differences in single-site myoelectric signals. J. Biomed. Eng., 4(1):17-22.

[15]Grill, W.M.Jr., Mortimer, J.T., 1996. The effect of stimulus pulse duration on selectivity of neural stimulation. IEEE Trans. Biomed. Eng., 43(2):161-166.

[16]Huang, H., Jiang, L., Zhao, D.W., Zhao, J.D., Cai, H.G., Liu, H., Meusel, P., Willberg, B., Hirzinger, G., 2006. The Development on a New Biomechatronic Prosthetic Hand Based on Under-Actuated Mechanism. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, p.3791-3796.

[17]Huang, H., Jiang, L., Pang, Y.J., Shi, S.C., Tang, Q.R., Yang, D.P., Liu, H., 2010. Observer-based dynamic control of an underactuated hand. Adv. Robot., 24(1-2):123-137.

[18]Huang, H.P., Chen, C.Y., 1999. Development of a Myoelectric Discrimination System for a Multi-degree Prosthetic Hand. Proc. IEEE Int. Conf. on Robotics and Automation, p.2392-2397.

[19]Jacobsen, S.C., Iversen, E.K., Knutti, D.F., Johnson, R.T., Biggers, K.B., 2001. Design of the Utah/MIT Dextrous Hand. IEEE Int. Conf. on Robotics and Automation, p.1520-1532.

[20]Kawasaki, H., Mouri, T., Ito, S., 2004. Toward Next Stage of Kinetic Humanoid Hand. 10th Int. Symp. on Robotics with Applications, p.129-134.

[21]Keerthi, S.S., Lin, C.J., 2003. Asymptotic behaviors of support vector machines with Gaussian kernel. Neur. Comput., 15(7):1667-1689.

[22]Kuiken, T., Marasco, P., Lock, B., Harden, R., Dewald, J., 2007. Redirection of cutaneous sensation from the hand to the chest skin of human amputees with targeted reinnervation. PNAS, 104(50):20061-20066.

[23]Kumar, P., Sebastian, A., Potluri, C., Urfer, A., Naidu, D.S., Schoen, M.P., 2010. Towards Smart Prosthetic Hand: Adaptive Probability Based Skeletan Muscle Fatigue Model. 32nd Annual Int. Conf. IEEE EMBS, p.1316-1319.

[24]Lee, H.C., Kang, B.J., Lee, E.C., Park, K.R., 2010. Finger vein recognition using weighted local binary pattern code based on a support vector machine. J. Zhejiang Univ.-Sci. C (Comput. & Electron.), 11(7):514-524.

[25]Lee, S., Saridis, G.N., 1984. The control of a prosthetic arm by EMG pattern recognition. IEEE Trans. Autom. Control, 29(4):290-320.

[26]Liu, H., Meusel, P., Seitz, N., Willberg, B., Hirzinger, G., Jin, M.H., Liu, Y.W., Wei, R., Xie, Z.W., 2007. The modular multisensory DLR-HIT-Hand. Mech. Mach. Theory, 42(5):612-625.

[27]Liu, Y.H., Huang, H.P., Weng, C.H., 2007. Recognition of electromyographic signals using cascaded kernel learning machine. IEEE/ASME Trans. Mechatron., 12(3):253-264.

[28]Lotti, F., Tiezzi, P., Vassura, G., Biagiotti, L., Palli, G., Melchiorri, C., 2005. Development of UB Hand 3: Early Results. Proc. IEEE Int. Conf. on Robotics and Automation, p.4488-4493.

[29]Loucks, C.S., Johnson, V.J., Boissiere, P.T., Starr, G.P., Steele, J.P.H., 1987. Modeling and Control of the Stanford/JPL Hand. Int. Conf. on Robotics and Automation, p.573-578.

[30]Merrill, D.R., Bikson, M., Jefferys, J.G., 2005. Electrical stimulation of excitable tissue: design of efficacious and safe protocols. J. Neurosci. Methods, 141(2):171-198.

[31]Micera, S., Carpaneto, J., Raspopovic, S., 2010. Control of hand prostheses using peripheral information. IEEE Rev. Biomed. Eng., 3:48-68.

[32]Pylatiuk, C., Mounier, S., Kargov, A., Schulz, S., Bretthauer, G., 2004. Progress in the Development of a Multifunctional Hand Prosthesis. Proc. 26th Annual Int. Conf. IEEE EMBS, p.4260-4263.

[33]Rosen, B., Ehrsson, H., Antfolk, C., Cipriani, C., Sebelius, F., Lundborg, G., 2009. Referral of sensation to an advanced humanoid robotic hand prosthesis. J. Plast. Reconstr. Surg. Hand Surg., 43(5):260-266.

[34]Scott, R.N., Caldwell, R.R., Britain, R.H., 1980. Sensory-feedback system compatible with myoelectric control. Med. Biol. Eng. Comput., 18(1):65-69.

[35]Shimizu, S., Shimojo, M., Sato, S., Seki, Y., Takahashi, A., Inukai, Y., Yoshioka, M., 1997. The Relationship Between Human Grip Types and Force Distribution Pattern in Grasping. Proc. 8th Int. Conf. on Advanced Robotics, p.299-304.

[36]Stepp, C.E., Matsuoka, Y., 2011. Object manipulation improvements due to single session training outweigh the differences among stimulation sites during vibrotactile feedback. IEEE Trans. Neur. Syst. Rehabil. Eng., 19(6):677-685.

[37]Taylor, C.L., Schwarz, R.J., 1955. The anatomy and mechanics of the human hand. Artif. Limbs, 2:22-35.

[38]Wimböck, T., Ott, C., Hirzinger, G., 2007. Impedance Behaviors for Two-Handed Manipulation: Design and Experiments. IEEE Int. Conf. on Robotics and Automation, p.4182-4189.

[39]Zhao, J.D., Xie, Z.W., Jiang, L., Cai, H.G., Liu, H., Hirzinger, G., 2005. Levenberg-Marquardt Based Neural Network Control for a Five-Fingered Prosthetic Hand. Proc. IEEE Int. Conf. on Robotics and Automation, p.4482-4487.

[40]Zhao, J.D., Xie, W.X., Jiang, L., Cai, H.G., Liu, H., Hirzinger, G., 2006. A Five-Fingered Underactuated Prosthetic Hand Control Scheme. First IEEE/RAS-EMBS Int. Conf. on Biomedical Robotics and Biomechatronics, p.995-1000.

[41]Zollo, L., Roccella, S., Tucci, R., Siciliano, B., Guglielmelli, E., Carrozza, M.C., Dario, P., 2006. BioMechatronic Design and Control of an Anthropomorphic Artificial Hand for Prosthetics and Robotic Applications. First Int. Conf. on Biomedical Robotics and Biomechatronics, p.402-407.

[42]Zollo, L., Roccella, S., Tucci, R., Siciliano, B., Guglielmelli, E., Carrozza, M.C., Dario, P., 2007. Biomechatronic design and control of an anthropomorphic artificial hand for prosthetic and robotic applications. IEEE/ASME Trans. Mechatron., 12(4):418-429.

Open peer comments: Debate/Discuss/Question/Opinion


Please provide your name, email address and a comment

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE