CLC number: TP183
On-line Access: 2012-06-05
Received: 2011-10-17
Revision Accepted: 2012-02-10
Crosschecked: 2012-04-09
Cited: 5
Clicked: 9286
Hasan Abbasi Nozari, Hamed Dehghan Banadaki, Mohammad Mokhtare, Somayeh Hekmati Vahed. Intelligent non-linear modelling of an industrial winding process using recurrent local linear neuro-fuzzy networks[J]. Journal of Zhejiang University Science C, 2012, 13(6): 403-412.
@article{title="Intelligent non-linear modelling of an industrial winding process using recurrent local linear neuro-fuzzy networks",
author="Hasan Abbasi Nozari, Hamed Dehghan Banadaki, Mohammad Mokhtare, Somayeh Hekmati Vahed",
journal="Journal of Zhejiang University Science C",
volume="13",
number="6",
pages="403-412",
year="2012",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.C11a0278"
}
%0 Journal Article
%T Intelligent non-linear modelling of an industrial winding process using recurrent local linear neuro-fuzzy networks
%A Hasan Abbasi Nozari
%A Hamed Dehghan Banadaki
%A Mohammad Mokhtare
%A Somayeh Hekmati Vahed
%J Journal of Zhejiang University SCIENCE C
%V 13
%N 6
%P 403-412
%@ 1869-1951
%D 2012
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.C11a0278
TY - JOUR
T1 - Intelligent non-linear modelling of an industrial winding process using recurrent local linear neuro-fuzzy networks
A1 - Hasan Abbasi Nozari
A1 - Hamed Dehghan Banadaki
A1 - Mohammad Mokhtare
A1 - Somayeh Hekmati Vahed
J0 - Journal of Zhejiang University Science C
VL - 13
IS - 6
SP - 403
EP - 412
%@ 1869-1951
Y1 - 2012
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.C11a0278
Abstract: This study deals with the neuro-fuzzy (NF) modelling of a real industrial winding process in which the acquired NF model can be exploited to improve control performance and achieve a robust fault-tolerant system. A new simulator model is proposed for a winding process using non-linear identification based on a recurrent local linear neuro-fuzzy (RLLNF) network trained by local linear model tree (LOLIMOT), which is an incremental tree-based learning algorithm. The proposed NF models are compared with other known intelligent identifiers, namely multilayer perceptron (MLP) and radial basis function (RBF). Comparison of our proposed non-linear models and associated models obtained through the least square error (LSE) technique (the optimal modelling method for linear systems) confirms that the winding process is a non-linear system. Experimental results show the effectiveness of our proposed NF modelling approach.
[1]Babuska, R., Verbruggen, H., 2003. Neuro-fuzzy methods for nonlinear system identification. Ann. Rev. Control, 27(1):73-85.
[2]Banadaki, H.D., Nozari, H.A., Kakahaji, H., 2011. Nonlinear simulator model identification of a walking beam furnace using recurrent local linear neuro-fuzzy network. Int. J. Control Autom., 4(4):123-134.
[3]Bastogne, T., Noura, H., Sibille, P., Richard, A., 1998. Multivariable identification of a winding process by subspace methods for tension control. Control Eng. Pract., 6(9):1077-1088.
[4]Braatz, R.D., Ogunnaike, B.A., Featherstone, A.P., 1996. Identification, Estimation and Control of Sheet and Film Processes. 13th IFAC World Congress, p.319-324.
[5]Ebler, N.A., Arnason, R., Michaelis, G., D′Sa, N., 1993. Tension control: dancer rolls or load cells. IEEE Trans. Ind. Appl., 29(4):727-739.
[6]Hoshino, I., Maekawa, Y., Fujimoto, T., Kimura, H., Kimura, H., 1988. Observer-based multivariable control of the aluminum cold tandem mill. Automatica, 24(6):741-754.
[7]Hussein, E.L., Sheta, A., El Wahab, A.A., 2001. Modeling of a Winding Machine Using Non-parametric Neural Networks. WSEAS Int. Conf. on Scientific Computation and Soft Computing, p.528-533.
[8]Hussian, A., Sheta, A., Kamel, M., Telbaney, M., Abdelwahab, A., 2000. Modeling of a Winding Machine Using Genetic Programming. Proc. Congress on Evolutionary Computation, p.398-402.
[9]Ljung, L., 1987. System Identification Theory for the User. Prentice Hall, Upper Saddle River, NJ.
[10]Nelles, O., 1996. Local Linear Model Tree for On-line Identification of Time Variant Non-linear Dynamic Systems. Int. Conf. on Artificial Neural Networks, p.115-120.
[11]Nelles, O., 2001. Nonlinear System Identification. Springer Verlag, Berlin.
[12]Nelles, O., Isermann, R., 1996. Basis Function Networks for Interpolation of Local Linear Models. IEEE Conf. on Decision and Control, p.470-475.
[13]Noura, H., Theilliol, D., Ponsart, J.C., Chamseddine, A., 2009. Fault-Tolerant Control Systems: Design and Practical Applications. Springer-Verlag London Limited.
[14]Parant, F., Iung, C., Bello, P., 1989. Traction and Speed Control. Third E.P.E. Conf., p.1417-1419.
[15]Parant, F., Coeffier, C., Iung, C., 1992. Modeling of web tension in a continuous annealing line. Iron Steel Eng., p.46-49.
[16]Razavi-Far, R., Davilu, H., Palade, V., Lucas, C., 2009. Model-based fault detection and isolation of a steam generator using neuro-fuzzy networks. Neurocomputing, 7(13-15):2939-2951.
[17]Sadeghian, M., Fatehi, A., 2011. Identification, prediction and detection of the process fault in a cement rotary kiln by locally linear neuro-fuzzy technique. J. Process Control, 21(2):302-308.
[18]Sievers, L., Balas, M.J., von Flotow, A., 1988. Modeling of web conveyance systems for multivariable control. IEEE Trans. Autom. Control, 33(6):524-531.
[19]SISTA, 1999. DaISy: Database for the Identification of Systems. Available from http://homes.esat.kuleuven.be/~smc/daisy/ [Accessed on Mar. 24, 2011].
Open peer comments: Debate/Discuss/Question/Opinion
<1>
babak@PNU<babak.arya27@yahoo.com>
2012-03-23 13:52:54
Thanks for the paper. it has been well-organized and useful.