Full Text:   <3756>

Summary:  <2220>

CLC number: TM4

On-line Access: 2014-03-05

Received: 2013-08-26

Revision Accepted: 2013-11-13

Crosschecked: 2014-02-19

Cited: 1

Clicked: 9313

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
1. Reference List
Open peer comments

Journal of Zhejiang University SCIENCE C 2014 Vol.15 No.3 P.232-240

http://doi.org/10.1631/jzus.C1300231


A power conversion system for PMSG-based WECS operating with fully-controlled current-source converters


Author(s):  Jian-yu Bao, Wei-bing Bao, Yu-ling Li

Affiliation(s):  Ningbo Institute of Technology, Zhejiang University, Ningbo 315100, China; more

Corresponding email(s):   baojy@nit.zju.edu.cn

Key Words:  Grid-connected, Wind energy conversion, Current-source rectifier, Multilevel current-source inverter


Share this article to: More <<< Previous Article|

Jian-yu Bao, Wei-bing Bao, Yu-ling Li. A power conversion system for PMSG-based WECS operating with fully-controlled current-source converters[J]. Journal of Zhejiang University Science C, 2014, 15(3): 232-240.

@article{title="A power conversion system for PMSG-based WECS operating with fully-controlled current-source converters",
author="Jian-yu Bao, Wei-bing Bao, Yu-ling Li",
journal="Journal of Zhejiang University Science C",
volume="15",
number="3",
pages="232-240",
year="2014",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.C1300231"
}

%0 Journal Article
%T A power conversion system for PMSG-based WECS operating with fully-controlled current-source converters
%A Jian-yu Bao
%A Wei-bing Bao
%A Yu-ling Li
%J Journal of Zhejiang University SCIENCE C
%V 15
%N 3
%P 232-240
%@ 1869-1951
%D 2014
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.C1300231

TY - JOUR
T1 - A power conversion system for PMSG-based WECS operating with fully-controlled current-source converters
A1 - Jian-yu Bao
A1 - Wei-bing Bao
A1 - Yu-ling Li
J0 - Journal of Zhejiang University Science C
VL - 15
IS - 3
SP - 232
EP - 240
%@ 1869-1951
Y1 - 2014
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.C1300231


Abstract: 
We propose a new power conversion system for a permanent magnet synchronous generator (PMSG) based grid-connected wind energy conversion system (WECS) operating with fully-controlled back-to-back current-source converters. On the generator side, two independent current-source rectifiers (CSRs) with space-vector pulse width modulation (SVPWM) are employed to regulate and stabilize DC-link currents. Between DC-link and the electrical grid, a direct-type three-phase five-level current-source inverter (CSI) is inserted as a buffer to regulate real and reactive power fed to the grid and thus adjusts the grid side power-factor. We also present a current-based maximum power point tracking (MPPT) scheme, which helps the generator extract the maximum power through closed-loop regulation of the generator speed. By applying the multilevel modulation and control strategies to the grid-side five-level CSI, a multilevel output current waveform with less distortion is produced, and the bulk requirement of the output capacitor filter to eliminate the harmonic current is reduced. All the proposed concepts are verified by simulation models built in a PSIM environment.

基于全控电流型变流器的永磁同步风力发电功率变换系统

研究目的:变流器是风力并网发电系统的核心,研究变流技术对于提高并网系统的灵活性、可靠性以及电能质量等都具有现实意义。本文采用背靠背全控电流源型变流器配置的永磁同步风力并网发电系统,结合电流空间矢量和电流多电平变流技术,探讨发电机侧最大功率跟踪(MPPT)技术和电网侧并网逆变控制技术在全控电流型变流器系统中的实现。
创新要点:结合电流型变流器的MPPT技术和多电平技术,提出既能并网发电、又能实现直流侧宽范围风速控制的全控电流型变流器风力并网发电系统。网侧采用电流多电平变流技术并应用多载波PWM调制策略,克服了传统电流源型变流器交流侧电流谐波含量高,谐波总畸变率(THD)不易满足并网要求的缺点。采用锁相环与电流解耦控制,实现了网侧可任意功率因数并网运行,提高了并网系统的灵活性。
研究方法:基于电流空间矢量方法实现发电机侧MPPT和直流母线电流控制。基于电路对偶变换构造三相电流型多电平变流器拓扑,并移植适用电压型多电平变流器的PD-PWM调制策略以消除低次电流谐波,解决了电流型多电平逆变器PWM调制策略难以实现的问题。结合锁相环与电流解耦控制,实现网侧可任意功率因数并网运行。
重要结论:发电机侧采用电流型PWM变流器,利用其内在升压特性可实现宽范围风速控制。网侧采用电流型多电平逆变器,拓扑结构与电压型多电平逆变器对偶,多电平PWM调制策略易实现;并网电流波形质量好、谐波含量低;直接电流输出控制受电网波动影响小。

关键词:风力发电;并网;MPPT;电流型多电平逆变器;多载波PWM

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Alizadeh, O., Yazdani, A., 2013. A strategy for real power control in a direct-drive PMSG-based wind energy conversion system. IEEE Trans. Power Del., 28(3):1297-1305.

[2]Bai, Z., Ma, H., Xu, D., et al., 2013. Control strategy with a generalized DC current balancing method for multimodule current-source converter. IEEE Trans. Power Electr., 29(1):366-373.

[3]Bao, J.Y., Bao, W.B., Zhang, Z.C., 2010a. Generalized multilevel current source inverter topology with self-balancing current. J. Zhejiang Univ.-Sci. C (Comput. & Electron.), 11(7):555-561.

[4]Bao, J.Y., Bao, W.B., Wang, S., et al., 2010b. Multilevel current source inverter topologies based on the duality principle. Proc. 25th Annual IEEE Applied Power Electronics Conf. and Expo, p.1097-1100.

[5]Chung, S.K., 2000. A phase tracking system for three phase utility interface inverters. IEEE Trans. Power Electr., 15(3):431-438.

[6]Dai, J., Xu, D., Wu, B., 2009. A novel control scheme for current-source-converter-based PMSG wind energy conversion systems. IEEE Trans. Power Electr., 24(4):963-972.

[7]Dash, P.P., Kazerani, M., 2011. Dynamic modeling and performance analysis of a grid-connected current-source inverter-based photovoltaic system. IEEE Trans. Sustain. Energy, 2(4):443-450.

[8]Dupczak, B.S., Perin, A.J., Heldwein, M.L., 2012. Space vector modulation strategy applied to interphase transformers-based five-level current source inverters. IEEE Trans. Power Electr., 27(6):2740-2751.

[9]Melício, R., Mendes, V.M.F., Catalão, J.P.S., 2010. Power converter topologies for wind energy conversion systems: integrated modeling, control strategy and performance simulation. Renew. Energy, 35(10):2165-2174.

[10]Melício, R., Mendes, V.M.F., Catalão, J.P.S., 2011. Comparative study of power converter topologies and control strategies for the harmonic performance of variable-speed wind turbine generator systems. Energy, 36(1):520-529.

[11]Nikolic, A., Jeftenic, B., 2010. Current source converter topologies for PMSG wind turbine applications. Proc. 14th Int. Power Electronics and Motion Control Conf., p.S14-27-S14-32.

[12]Popat, M., Wu, B., Liu, F., et al., 2012a. Coordinated control of cascaded current-source converter based offshore wind farm. IEEE Trans. Sustain. Energy, 3(3):557-565.

[13]Popat, M., Wu, B., Zargari, N.R., 2012b. A novel decoupled interconnecting method for current-source converter-based offshore wind farms. IEEE Trans. Power Electr., 27(10):4224-4233.

[14]Popat, M., Wu, B., Zargari, N.R., 2013. Fault ride-through capability of cascaded current-source converter-based offshore wind farm. IEEE Trans. Sustain. Energy, 4(2):314-323.

[15]Sahan, B., Araújo, S.V., Nöding, C., et al., 2011. Comparative evaluation of three-phase current source inverters for grid interfacing of distributed and renewable energy systems. IEEE Trans. Power Electr., 26(8):2304-2318.

[16]Senturk, O.S., Helle, L., Munk-Nielsen, S., et al., 2012. Power capability investigation based on electrothermal models of press-pack IGBT three-level NPC and ANPC VSCs for multimegawatt wind turbines. IEEE Trans. Power Electr., 27(7):3195-3206.

[17]Sharma, S., Singh, B., 2012. Control of permanent magnet synchronous generator-based stand-alone wind energy conversion system. IET Power Electr., 5(8):1519-1526.

[18]Singh, M., Khadkikar, V., Chandra, A., 2011. Grid synchronisation with harmonics and reactive power compensation capability of a permanent magnet synchronous generator-based variable speed wind energy conversion system. IET Power Electr., 4(1):122-130.

[19]Teshirogi, T., Nishikata, S., 2011. Effects of system parameters on the performance characteristics of a wind turbine generating system using a current-source thyristor inverter. IEEE Trans. Ind. Appl., 47(1):252-257.

[20]Wang, J.C., Dai, J.Y., Wu, B., et al., 2011. Megawatt wind energy conversion system with diode rectifier and multilevel current source inverter. Proc. IEEE Energy Conversion Congress and Exposition, p.871-876.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE