CLC number: TP181
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2023-01-08
Cited: 0
Clicked: 2880
Citations: Bibtex RefMan EndNote GB/T7714
https://orcid.org/0000-0002-8117-9764
https://orcid.org/0000-0001-5779-7135
https://orcid.org/0000-0003-2004-3289
Shaoqiang YE, Kaiqing ZHOU, Azlan Mohd ZAIN, Fangling WANG, Yusliza YUSOFF. A modified harmony search algorithm and its applications in weighted fuzzy production rule extraction[J]. Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/FITEE.2200334 @article{title="A modified harmony search algorithm and its applications in weighted fuzzy production rule extraction", %0 Journal Article TY - JOUR
一种改进的和声搜索算法及其在权重模糊产生式规则获取中的应用1吉首大学通信与电子工程学院,中国吉首市,416000 2马来西亚理工大学信息处理技术学院,马来西亚柔佛州士姑来, 81310 摘要:和声搜索算法(harmony search, HS)是一种随机元启发式算法,其灵感来自于音乐家的即兴创作过程。针对HS在求解中易陷入局部极值等不足,本文提出一种混合布谷鸟算子的改进的和声布谷鸟搜索算法(modified HS withahybridcuckoosearch (CS) operator, HS-CS)增强全局搜索能力。该算法首先对HS音高扰动调整方法的随机性进行分析,根据和声库中解的质量生成自适应惯性权重,并重构微调带宽寻优,提升HS的寻优效率及精度。其次,引入CS算子扩大解空间的搜索范围和提高种群密度,从而能够在随机生成和声和更新阶段快速跳出局部极值。最后,构建动态参数调整机制以提高算法寻优的效率。通过证明3个定理揭示HS-CS是一种全局收敛的元启发式算法。在实验部分,选取12种经典的测试函数优化求解以验证HS-CS算法的性能。数值分析结果表明,HS-CS在处理高维函数优化问题上显著优于其他算法,表现出较强鲁棒性、高收敛速度以及收敛精度。为进一步验证算法在实际问题求解中的有效性,将HS-CS用于优化BP神经网络进行加权模糊产生式的规则抽取。仿真实验结果表明,HS-CS优化后的BP神经网络能够获得较高的规则分类精度。因此,从理论和应用方面都证明了HS-CS是行之有效的。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Abbasi M, Abbasi E, Mohammadi-Ivatloo B, 2021. Single and multi-objective optimal power flow using a new differential-based harmony search algorithm. J Amb Intell Human Comput, 12(1):851-871. ![]() [2]Al-Shaikh A, Mahafzah BA, Alshraideh M, 2023. Hybrid harmony search algorithm for social network contact tracing of COVID-19. Soft Comput, 27:3343-3365. ![]() [3]Costa A, Fernandez-Viagas V, 2022. A modified harmony search for the T-single machine scheduling problem with variable and flexible maintenance. Expert Syst Appl, 198:116897. ![]() [4]Geem ZW, Kim JH, Loganathan GV, 2001. A new heuristic optimization algorithm: harmony search. Simulation, 76(2):60-68. ![]() [5]Gong JH, Zhang ZQ, Liu JQ, et al., 2021. Hybrid algorithm of harmony search for dynamic parallel row ordering problem. J Manuf Syst, 58:159-175. ![]() [6]Gupta S, 2022. Enhanced harmony search algorithm with non-linear control parameters for global optimization and engineering design problems. Eng Comput, 38(4):3539-3562. ![]() [7]Jagatheesan K, Anand B, Samanta S, et al., 2019. Design of a proportional-integral-derivative controller for an automatic generation control of multi-area power thermal systems using firefly algorithm. IEEE/CAA J Autom Sin, 6(2):503-515. ![]() [8]Kamoona AM, Patra JC, 2019. A novel enhanced cuckoo search algorithm for contrast enhancement of gray scale images. Appl Soft Comput, 85:105749. https://doi.org/10.1016/j.asoc.2019.105749 ![]() [9]Karaboga D, Gorkemli B, Ozturk C, et al., 2014. A comprehensive survey: artificial bee colony (ABC) algorithm and applications. Artif Intell Rev, 42(1):21-57. ![]() [10]Li HC, Zhou KQ, Mo LP, et al., 2020. Weighted fuzzy production rule extraction using modified harmony search algorithm and BP neural network framework. IEEE Access, 8:186620-186637. ![]() [11]Mirjalili S, 2015. Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm. Knowl-Based Syst, 89:228-249. ![]() [12]Mousavi SM, Abdullah S, Niaki STA, et al., 2021. An intelligent hybrid classification algorithm integrating fuzzy rule-based extraction and harmony search optimization: medical diagnosis applications. Knowl-Based Syst, 220:106943. https://doi/org/10.1016/j.knosys.2021.106943 ![]() [13]Ong P, Zainuddin Z, 2019. Optimizing wavelet neural networks using modified cuckoo search for multi-step ahead chaotic time series prediction. Appl Soft Comput, 80:374-386. ![]() [14]Ouyang HB, Gao LQ, Li S, 2018. Amended harmony search algorithm with perturbation strategy for large-scale system reliability problems. Appl Intell, 48(11):3863-3888. ![]() [15]Qin AK, Forbes F, 2011. Harmony search with differential mutation based pitch adjustment. Proc 13th Annual Conf on Genetic and Evolutionary Computation, p.545-552. ![]() [16]Qin F, Zain AM, Zhou KQ, 2022. Harmony search algorithm and related variants: a systematic review. Swarm Evol Comput, 74:101126. https://doi.org/10.1016/j.swevo.2022.101126 ![]() [17]Shaffiei ZA, Abas ZA, Yunos NM, et al., 2019. Constrained self-adaptive harmony search algorithm with 2-opt swapping for driver scheduling problem of university shuttle bus. Arab J Sci Eng, 44(4):3681-3698. https://doi.org/10.1007/s13369-018-3628-x ![]() [18]Singh N, Kaur J, 2021. Hybridizing sine–cosine algorithm with harmony search strategy for optimization design problems. Soft Comput, 25(16):11053-11075. ![]() [19]Solis FJ, Wets RJB, 1981. Minimization by random search techniques. Math Oper Res, 6(1):19-30. https://doi.org/10.1287/moor.6.1.19 ![]() [20]Tang J, Liu G, Pan QT, 2021. A review on representative swarm intelligence algorithms for solving optimization problems: applications and trends. IEEE/CAA J Autom Sin, 8(10):1627-1643. ![]() [21]Tu Q, Chen XC, Liu XC, 2019. Multi-strategy ensemble grey wolf optimizer and its application to feature selection. Appl Soft Comput, 76:16-30. https://doi.org/10.1016/j.asoc. 2018.11.047 ![]() [22]Valaei MR, Behnamian J, 2017. Allocation and sequencing in 1-out-of-N heterogeneous cold-standby systems: multi-objective harmony search with dynamic parameters tuning. Reliab Eng Syst Saf, 157:78-86. ![]() [23]Wang L, Hu HL, Liu R, et al., 2019. An improved differential harmony search algorithm for function optimization problems. Soft Comput, 23(13):4827-4852. https://doi.org/10.1007/s00500-018-3139-4 ![]() [24]Wang YR, Gao SC, Zhou MC, et al., 2021. A multi-layered gravitational search algorithm for function optimization and real-world problems. IEEE/CAA J Autom Sin, 8(1):94-109. ![]() [25]Yang XS, Deb S, 2009. Cuckoo search via Lévy flights. World Congress on Nature & Biologically Inspired Computing, p.210-214. ![]() [26]Ye SQ, Zhou KQ, Zhang CX, et al., 2022. An improved multi-objective cuckoo search approach by exploring the balance between development and exploration. Electronics, 11(5):704. ![]() [27]Zhao ZY, Liu SX, Zhou MC, et al., 2021. Dual-objective mixed integer linear program and memetic algorithm for an industrial group scheduling problem. IEEE/CAA J Autom Sin, 8(6):1199-1209. ![]() [28]Zhu QD, Tang XM, Elahi A, 2021. Application of the novel harmony search optimization algorithm for DBSCAN clustering. Expert Syst Appl, 178:115054. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>