CLC number: TN821
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2023-10-11
Cited: 0
Clicked: 1985
Citations: Bibtex RefMan EndNote GB/T7714
Jiaguo LU, Haoran ZHU. Engineering applications and technical challenges of active array microsystems[J]. Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/FITEE.2300401 @article{title="Engineering applications and technical challenges of active array microsystems", %0 Journal Article TY - JOUR
有源阵列微系统工程应用与技术挑战1中国电子科技集团公司第三十八研究所,中国合肥市,230039 2安徽大学电子信息工程学院,中国合肥市,230601 摘要:后摩尔时代,有源相控阵天线必然向有源阵列微系统发展。本文简述了有源阵列天线的特点和组成;围绕有源阵列微系统的高效率、低剖面和轻量化等特点,分析了在机载多功能雷达、航天雷达和通信系统等工程方面的应用前景和优势;针对集成电路后摩尔时代的特点,提出了有源阵列微系统多尺度、多信号和多物理场等耦合科学技术问题;分析讨论了天线阵列微系统所涉及的新型架构和算法、无源器件微型化、新型材料与工艺、超宽带技术、跨领域新技术应用等挑战,为有源阵列微系统深入研究奠定基础。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Babakhani A, Guan X, Komijani A, et al., 2006. A 77-GHz phased-array transceiver with on-chip antennas in silicon: receiver and antennas. IEEE J Sol-State Circ, 41(12):2795-2806. ![]() [2]Baggen L, Holzwarth S, Boettcher M, et al., 2006. Advances in phased array technology. Proc 3rd European Radar Conf, p.87-91. ![]() [3]Baggen L, Böttcher M, Otto S, et al., 2013. Phased array technology by IMST: a comprehensive overview. Proc IEEE Int Symp on Phased Array Systems and Technology, p.21-28. ![]() [4]Bahl IJ, 2009. Fundamentals of RF and Microwave Transistor Amplifiers. John Wiley & Sons, Hoboken, USA, p.295-312. ![]() [5]Beer S, Gulan H, Rusch C, et al., 2012. Coplanar 122-GHz antenna array with air cavity reflector for integration in plastic packages. IEEE Antenn Wirel Propag Lett, 11:160-163. ![]() [6]Charlish A, Woodbridge K, Griffiths H, 2015. Phased array radar resource management using continuous double auction. IEEE Trans Aerosp Electron Syst, 51(3):2212-2224. ![]() [7]Cho MK, Yoon SH, Sim S, et al., 2012. CMOS-based bi-directional T/R chipsets for phased array antenna. Proc IEEE/MTT-S Int Microwave Symp Digest, p.1-3. ![]() [8]Doane JP, Sertel K, Volakis JL, 2013. A wideband, wide scanning tightly coupled dipole array with integrated balun (TCDA-IB). IEEE Trans Antenn Propag, 61(9):4538-4548. ![]() [9]Fang J, Guan W, Zhang XL, 2018. An UWB wide-angle scan dual-polarization array antenna. J Microw, 34(S1):138-140(in Chinese). ![]() [10]Fei C, Yang YC, Li Q, et al., 2018. Shielding technique for planar matrix transformers to suppress common-mode EMI noise and improve efficiency. IEEE Trans Ind Electron, 65(2):1263-1272. ![]() [11]Fischer A, Tong ZQ, Hamidipour A, et al., 2014. 77-GHz multi-channel radar transceiver with antenna in package. IEEE Trans Antenn Propag, 62(3):1386-1394. ![]() [12]Ghosh R, Joshi Y, 2014. Proper orthogonal decomposition-based modeling framework for improving spatial resolution of measured temperature data. IEEE Trans Compon Packag Manuf Technol, 4(5):848-858. ![]() [13]Gupta KC, Hall PS, 2000. Analysis and Design of Integrated Circuit-Antenna Modules. Wiley, New York, USA. ![]() [14]Han QH, Pan MH, Zhang WC, et al., 2018. Time resource management of OAR based on fuzzy logic priority for multiple target tracking. J Syst Eng Electron, 29(4):742-755. ![]() [15]Hannachi C, Djerafi T, Tatu SO, 2018. Broadband E-band WR12 to microstrip line transition using a ridge structure on high-permittivity thin-film material. IEEE Microw Wirel Compon Lett, 28(7):552-554. ![]() [16]Hansen RC, 2003. Current induced on a wire: implications for connected arrays. IEEE Antenn Wirel Propag Lett, 2:288-289. ![]() [17]Hansen RC, 2004. Linear connected arrays. IEEE Antenn Wirel Propag Lett, 3:154-156. ![]() [18]Herd JS, Conway MD, 2016. The evolution to modern phased array architectures. Proc IEEE, 104(3):519-529. ![]() [19]Holland SS, Vouvakis MN, 2012. The planar ultrawideband modular antenna (PUMA) array. IEEE Trans Antenn Propag, 60(1):130-140. ![]() [20]Huang HC, Lu JG, 2021. Evolution of innovative 5G millimeter-wave antenna designs integrating non-millimeter-wave antenna functions based on antenna-in-package (AiP) solution to cellular phones. IEEE Access, 9:72516-72523. ![]() [21]Huang HC, Lu JG, 2022. Retrospect and prospect on integrations of millimeter-wave antennas and non-millimeter-wave antennas to mobile phones. IEEE Access, 10:48904-48912. ![]() [22]Iwamoto N, Yuen MMF, Fan HB, 2012. Molecular Modeling and Multiscaling Issues for Electronic Material Applications. Springer, New York, USA. ![]() [23]Jeauneau V, Barbaresco F, Guenais T, 2014. Radar tasks scheduling for a multifunction phased array radar with hard time constraint and priority. Proc Int Radar Conf, p.1-6. ![]() [24]Jia WK, Helenbrook BT, Cheng MC, 2016. Fast thermal simulation of FinFET circuits based on a multiblock reduced-order model. IEEE Trans Comput-Aided Des Integr Circ Syst, 35(7):1114-1124. ![]() [25]Kapat S, 2017. Parameter-insensitive mixed-signal hysteresis-band current control for point-of-load converters with fixed frequency and robust stability. IEEE Trans Power Electron, 32(7):5760-5770. ![]() [26]Langley JDS, Hall PS, Newham P, 1996. Balanced antipodal Vivaldi antenna for wide bandwidth phased arrays. IEE Proc-Microw Antenn Propag, 143(2):97-102. ![]() [27]Lau JH, Li M, Li QM, et al., 2018. Fan-out wafer-level packaging for heterogeneous integration. IEEE Trans Compon Packag Manuf Technol, 8(9):1544-1560. ![]() [28]Le Coq M, Rius E, Favennec JF, et al., 2015. Miniaturized C-band SIW filters using high-permittivity ceramic substrates. IEEE Trans Compon Packag Manuf Technol, 5(5):620-626. ![]() [29]Li H, Zhan CC, Zhang N, 2018. A fully on-chip digitally assisted LDO regulator with improved regulation and transient responses. IEEE Trans Circ Syst I Reg Papers, 65(11):4027-4034. ![]() [30]Logan JT, Kindt RW, Lee MY, et al., 2018. A new class of planar ultrawideband modular antenna arrays with improved bandwidth. IEEE Trans Antenn Propag, 66(2):692-701. ![]() [31]Lu JG, 2001. Research on a rectangular cavity crossed slot antenna. J Microw, 17(1):1-6(in Chinese). ![]() [32]Lu JG, 2015. The technique challenges and realization of space-borne digital array SAR. Proc 5th Asia-Pacific Conf on Synthetic Aperture Radar, p.1-5. ![]() [33]Lu JG, 2017. Design Technology of Synthetic Aperture Radar. National Defense Industry Press, Beijing, China(in Chinese). ![]() [34]Lu JG, 2019. Design Techniques of Synthetic Aperture Radar. Wiley-IEEE Press, Hoboken, USA. ![]() [35]Lu JG, Wang Y, 2020. From active phased array antenna to antenna array microsystem in post-Moore era. Sci Sin Inform, 50(7):1091-1109(in Chinese). ![]() [36]Lu JG, Wu MQ, Chen SQ, et al., 2000. A calibration method of phased array radar based on FFT. Chin J Radio Sci, 15(2):221-224(in Chinese). ![]() [37]Lu JG, Wang W, Qi MQ, 2013. Grating lobes suppression in phased array antenna for space-borne SAR applications. J Microw, 29(5-6):135-138(in Chinese). ![]() [38]Lu JG, Zhong XL, Chen RY, 2015. Very-high-resolution spaceborne spotlight SAR imaging with the "stop-and-go" assumption invalid. Radar Sci Technol, 13(5):449-456(in Chinese). ![]() [39]Lu JG, Zhang HT, Wang W, et al., 2019. Broadband dual-polarized waveguide slot filtenna array with low cross polarization and high efficiency. IEEE Trans Antenn Propag, 67(1):151-159. ![]() [40]Lu JG, Wang W, Lu XP, et al., 2020. Research on three matching problems in waveguide slot antenna. Radar Sci Technol, 18(2):115-123(in Chinese). ![]() [41]Lu JG, Wang W, Wang XL, 2021. Active Array Antenna for High Resolution Microwave Imaging Radar. National Defense Industry Press, Beijing, China(in Chinese). ![]() [42]Lu JG, Zhang HT, Wang W, et al., 2022. An efficient technique to realize low-profile dual-band multi-polarized shared-aperture slot antenna array. Int J RF Microw Comput Aided Eng, 32(12):e23458. ![]() [43]Monier-Vinard E, Rogie B, Bissuel V, et al., 2017. State of the art of thermal characterization of electronic components using computational fluid dynamic tools. Int J Numer Methods Heat Fluid Flow, 27(11):2433-2450. ![]() [44]Moulder WF, Sertel K, Volakis JL, 2013. Ultrawideband superstrate-enhanced substrate-loaded array with integrated feed. IEEE Trans Antenn Propag, 61(11):5802-5807. ![]() [45]Munk B, Taylor R, Durharn T, et al., 2003. A low-profile broadband phased array antenna. Proc IEEE Antennas and Propagation Society International Symp, p.448-451. ![]() [46]Nishikawa I, Ueno M, Ishizuka Y, et al., 2006. Dynamic characteristics of pulse rate control of a POL converter. Proc 28th Int Telecommunications Energy Conf, p.1-6. ![]() [47]Novak MH, Miranda FA, Volakis JL, 2018. Ultra-wideband phased array for millimeter-wave ISM and 5G bands, realized in PCB. IEEE Trans Antenn Propag, 66(12):6930-6938. ![]() [48]Qian JW, Zhu HR, Tang M, et al., 2021. A 24 GHz microstrip comb array antenna with high sidelobe suppression for radar sensor. IEEE Antenn Wirel Propag Lett, 20(7):1220-1224. ![]() [49]Reiskarimian N, Zhou J, Krishnaswamy H, 2017. A CMOS passive LPTV nonmagnetic circulator and its application in a full-duplex receiver. IEEE J Sol-State Circ, 52(5):1358-1372. ![]() [50]Sabharwal A, Schniter P, Guo DN, et al., 2014. In-band full-duplex wireless: challenges and opportunities. IEEE J Sel Areas Commun, 32(9):1637-1652. ![]() [51]Shen W, Zhu HR, 2020. Vertically stacked trisection SIW filter with controllable transmission zeros. IEEE Microw Wirel Compon Lett, 30(3):237-240. ![]() [52]Shin J, Schaubert DH, 1999. A parameter study of stripline-fed Vivaldi notch-antenna arrays. IEEE Trans Antenn Propag, 47(5):879-886. ![]() [53]Singh S, Kukal T, 2020. LTCC PoP technology-based novel approach for mm-wave 5G system for next generation communication system. Proc 70th Electronic Components and Technology Conf, p.1973-1978. ![]() [54]Syed WH, Neto A, 2013. Front-to-back ratio enhancement of planar printed antennas by means of artificial dielectric layers. IEEE Trans Antenn Propag, 61(11):5408-5416. ![]() [55]Tang J, Lee J, Roh J, 2019. Low-power fast-transient capacitor-less LDO regulator with high slew-rate class-AB amplifier. IEEE Trans Circ Syst II Exp Briefs, 66(3):462-466. ![]() [56]Zhang KC, Guliani A, Ogrenci-Memik S, et al., 2018. Machine learning-based temperature prediction for runtime thermal management across system components. IEEE Trans Parall Distrib Syst, 29(2):405-419. ![]() [57]Zheng YY, Sheng WX, 2017. Compact lumped-element LTCC bandpass filter for low-loss VHF-band applications. IEEE Microw Wirel Compon Lett, 27(12):1074-1076. ![]() [58]Zhu HR, Mao JF, 2013. Localized planar EBG structure of CSRR for ultrawideband SSN mitigation and signal integrity improvement in mixed-signal systems. IEEE Trans Compon Packag Manuf Technol, 3(12):2092-2100. ![]() [59]Zhu HR, Wang J, 2023a. Miniaturized, ultrawideband and low insertion loss Ku-band GaAs on-chip limiter by improved π-type topology with capacitive loading. IEEE Trans Electron Dev, 70(3):971-978. ![]() [60]Zhu HR, Wang WT, 2023b. High selectivity millimeter-wave on-chip band-pass filter with semi-lumped dual-mode resonator by using GaAs technology. IEEE Electron Dev Lett, 44(5):729-732. ![]() [61]Zhu HR, Li JJ, Mao JF, 2013. Ultra-wideband suppression of SSN using localized topology with CSRRs and embedded capacitance in high-speed circuits. IEEE Trans Microw Theory Techn, 61(2):764-772. ![]() [62]Zhu HR, Sun YF, Wu XL, 2018. A compact tapered EBG structure with sharp selectivity and wide stopband by using CSRR. IEEE Microw Wirel Compon Lett, 28(9):771-773. ![]() [63]Zhu HR, Sun YF, Huang ZX, et al., 2019. A compact EBG structure with etching spiral slots for ultrawideband simultaneous switching noise mitigation in mixed signal systems. IEEE Trans Compon Packag Manuf Technol, 9(8):1559-1567. ![]() [64]Zhu HR, Ning XY, Huang ZX, et al., 2021a. Miniaturized, ultra-wideband and high isolation single pole double throw switch by using π-type topology in GaAs pHEMT technology. IEEE Trans Circ Syst II Exp Briefs, 68(1):191-195. ![]() [65]Zhu HR, Zhao YL, Lu JG, 2021b. A novel vertical wire-bonding compensation structure adaptively modeled and optimized with GRNN and GA methods for system in package. IEEE Trans Electromagn Compat, 63(6):2082-2092. ![]() [66]Zhu HR, Li K, Lu JG, et al., 2022. Millimeter-wave active integrated semielliptic CPW slot antenna with ultrawideband compensation of ball grid array interconnection. IEEE Trans Compon Packag Manuf Technol, 12(1):111-120. ![]() [67]Zhu HR, Wang J, Tang M, 2023. Compact, high power capacity, and low insertion loss millimeter-wave on-chip limiting filter with GaAs PIN technology. IEEE Trans Circ Syst I Reg Papers, 70(3):1175-1188. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>