Full Text:   <961>

CLC number: TN821

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2023-10-11

Cited: 0

Clicked: 1047

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Jiaguo LU

https://orcid.org/0000-0002-6572-4216

Haoran ZHU

https://orcid.org/0000-0003-0802-9089

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2024 Vol.25 No.3 P.342-368

http://doi.org/10.1631/FITEE.2300401


Engineering applications and technical challenges of active array microsystems


Author(s):  Jiaguo LU, Haoran ZHU

Affiliation(s):  East China Research Institute of Electronic Engineering, Hefei 230039, China; more

Corresponding email(s):   jglu@ustc.edu.cn, hrzhu86@gmail.com

Key Words:  Microelectronics, Heterogeneous integration, Packaging materials, Antenna array microsystems, Multi-functional radar, Communication


Jiaguo LU, Haoran ZHU. Engineering applications and technical challenges of active array microsystems[J]. Frontiers of Information Technology & Electronic Engineering, 2024, 25(3): 342-368.

@article{title="Engineering applications and technical challenges of active array microsystems",
author="Jiaguo LU, Haoran ZHU",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="25",
number="3",
pages="342-368",
year="2024",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2300401"
}

%0 Journal Article
%T Engineering applications and technical challenges of active array microsystems
%A Jiaguo LU
%A Haoran ZHU
%J Frontiers of Information Technology & Electronic Engineering
%V 25
%N 3
%P 342-368
%@ 2095-9184
%D 2024
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2300401

TY - JOUR
T1 - Engineering applications and technical challenges of active array microsystems
A1 - Jiaguo LU
A1 - Haoran ZHU
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 25
IS - 3
SP - 342
EP - 368
%@ 2095-9184
Y1 - 2024
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2300401


Abstract: 
In the post-Moore era, the development of active phased array antennas will inevitably trend towards active array microsystems. In this paper, the characteristics and composition of the active array antenna are briefly described. Owing to the high efficiency, low profile, and light weight of the active array microsystems, the application prospects and advantages in the engineering of multi-functional airborne radar, spaceborne radar, and communication systems are analyzed. Moreover, according to the characteristics of the post-Moore era of integrated circuits, scientific and technological problems in the active array microsystems are presented, including multi-scale, multi-signal, and multi-physics field coupling. The challenges are also discussed, such as new architectures and algorithms, miniaturization of passive components, novel materials and processes, ultra-wideband technology, and new interdisciplinary technological applications. This paper is expected to inspire in-depth research on active array microsystems.

有源阵列微系统工程应用与技术挑战

鲁加国1,朱浩然2
1中国电子科技集团公司第三十八研究所,中国合肥市,230039
2安徽大学电子信息工程学院,中国合肥市,230601
摘要:后摩尔时代,有源相控阵天线必然向有源阵列微系统发展。本文简述了有源阵列天线的特点和组成;围绕有源阵列微系统的高效率、低剖面和轻量化等特点,分析了在机载多功能雷达、航天雷达和通信系统等工程方面的应用前景和优势;针对集成电路后摩尔时代的特点,提出了有源阵列微系统多尺度、多信号和多物理场等耦合科学技术问题;分析讨论了天线阵列微系统所涉及的新型架构和算法、无源器件微型化、新型材料与工艺、超宽带技术、跨领域新技术应用等挑战,为有源阵列微系统深入研究奠定基础。

关键词:微电子;异构集成;封装材料;天线阵列微系统;多功能雷达;通信

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Babakhani A, Guan X, Komijani A, et al., 2006. A 77-GHz phased-array transceiver with on-chip antennas in silicon: receiver and antennas. IEEE J Sol-State Circ, 41(12):2795-2806.

[2]Baggen L, Holzwarth S, Boettcher M, et al., 2006. Advances in phased array technology. Proc 3rd European Radar Conf, p.87-91.

[3]Baggen L, Böttcher M, Otto S, et al., 2013. Phased array technology by IMST: a comprehensive overview. Proc IEEE Int Symp on Phased Array Systems and Technology, p.21-28.

[4]Bahl IJ, 2009. Fundamentals of RF and Microwave Transistor Amplifiers. John Wiley & Sons, Hoboken, USA, p.295-312.

[5]Beer S, Gulan H, Rusch C, et al., 2012. Coplanar 122-GHz antenna array with air cavity reflector for integration in plastic packages. IEEE Antenn Wirel Propag Lett, 11:160-163.

[6]Charlish A, Woodbridge K, Griffiths H, 2015. Phased array radar resource management using continuous double auction. IEEE Trans Aerosp Electron Syst, 51(3):2212-2224.

[7]Cho MK, Yoon SH, Sim S, et al., 2012. CMOS-based bi-directional T/R chipsets for phased array antenna. Proc IEEE/MTT-S Int Microwave Symp Digest, p.1-3.

[8]Doane JP, Sertel K, Volakis JL, 2013. A wideband, wide scanning tightly coupled dipole array with integrated balun (TCDA-IB). IEEE Trans Antenn Propag, 61(9):4538-4548.

[9]Fang J, Guan W, Zhang XL, 2018. An UWB wide-angle scan dual-polarization array antenna. J Microw, 34(S1):‍138-140(in Chinese).

[10]Fei C, Yang YC, Li Q, et al., 2018. Shielding technique for planar matrix transformers to suppress common-mode EMI noise and improve efficiency. IEEE Trans Ind Electron, 65(2):1263-1272.

[11]Fischer A, Tong ZQ, Hamidipour A, et al., 2014. 77-GHz multi-channel radar transceiver with antenna in package. IEEE Trans Antenn Propag, 62(3):1386-1394.

[12]Ghosh R, Joshi Y, 2014. Proper orthogonal decomposition-based modeling framework for improving spatial resolution of measured temperature data. IEEE Trans Compon Packag Manuf Technol, 4(5):848-858.

[13]Gupta KC, Hall PS, 2000. Analysis and Design of Integrated Circuit-Antenna Modules. Wiley, New York, USA.

[14]Han QH, Pan MH, Zhang WC, et al., 2018. Time resource management of OAR based on fuzzy logic priority for multiple target tracking. J Syst Eng Electron, 29(4):742-755.

[15]Hannachi C, Djerafi T, Tatu SO, 2018. Broadband E-band WR12 to microstrip line transition using a ridge structure on high-permittivity thin-film material. IEEE Microw Wirel Compon Lett, 28(7):552-554.

[16]Hansen RC, 2003. Current induced on a wire: implications for connected arrays. IEEE Antenn Wirel Propag Lett, 2:288-289.

[17]Hansen RC, 2004. Linear connected arrays. IEEE Antenn Wirel Propag Lett, 3:154-156.

[18]Herd JS, Conway MD, 2016. The evolution to modern phased array architectures. Proc IEEE, 104(3):519-529.

[19]Holland SS, Vouvakis MN, 2012. The planar ultrawideband modular antenna (PUMA) array. IEEE Trans Antenn Propag, 60(1):130-140.

[20]Huang HC, Lu JG, 2021. Evolution of innovative 5G millimeter-wave antenna designs integrating non-millimeter-wave antenna functions based on antenna-in-package (AiP) solution to cellular phones. IEEE Access, 9:72516-72523.

[21]Huang HC, Lu JG, 2022. Retrospect and prospect on integrations of millimeter-wave antennas and non-millimeter-wave antennas to mobile phones. IEEE Access, 10:48904-48912.

[22]Iwamoto N, Yuen MMF, Fan HB, 2012. Molecular Modeling and Multiscaling Issues for Electronic Material Applications. Springer, New York, USA.

[23]Jeauneau V, Barbaresco F, Guenais T, 2014. Radar tasks scheduling for a multifunction phased array radar with hard time constraint and priority. Proc Int Radar Conf, p.1-6.

[24]Jia WK, Helenbrook BT, Cheng MC, 2016. Fast thermal simulation of FinFET circuits based on a multiblock reduced-order model. IEEE Trans Comput-Aided Des Integr Circ Syst, 35(7):1114-1124.

[25]Kapat S, 2017. Parameter-insensitive mixed-signal hysteresis-band current control for point-of-load converters with fixed frequency and robust stability. IEEE Trans Power Electron, 32(7):5760-5770.

[26]Langley JDS, Hall PS, Newham P, 1996. Balanced antipodal Vivaldi antenna for wide bandwidth phased arrays. IEE Proc-Microw Antenn Propag, 143(2):97-102.

[27]Lau JH, Li M, Li QM, et al., 2018. Fan-out wafer-level packaging for heterogeneous integration. IEEE Trans Compon Packag Manuf Technol, 8(9):1544-1560.

[28]Le Coq M, Rius E, Favennec JF, et al., 2015. Miniaturized C-band SIW filters using high-permittivity ceramic substrates. IEEE Trans Compon Packag Manuf Technol, 5(5):620-626.

[29]Li H, Zhan CC, Zhang N, 2018. A fully on-chip digitally assisted LDO regulator with improved regulation and transient responses. IEEE Trans Circ Syst I Reg Papers, 65(11):4027-4034.

[30]Logan JT, Kindt RW, Lee MY, et al., 2018. A new class of planar ultrawideband modular antenna arrays with improved bandwidth. IEEE Trans Antenn Propag, 66(2):692-701.

[31]Lu JG, 2001. Research on a rectangular cavity crossed slot antenna. J Microw, 17(1):1-6(in Chinese).

[32]Lu JG, 2015. The technique challenges and realization of space-borne digital array SAR. Proc 5th Asia-Pacific Conf on Synthetic Aperture Radar, p.1-5.

[33]Lu JG, 2017. Design Technology of Synthetic Aperture Radar. National Defense Industry Press, Beijing, China(in Chinese).

[34]Lu JG, 2019. Design Techniques of Synthetic Aperture Radar. Wiley-IEEE Press, Hoboken, USA.

[35]Lu JG, Wang Y, 2020. From active phased array antenna to antenna array microsystem in post-Moore era. Sci Sin Inform, 50(7):1091-1109(in Chinese).

[36]Lu JG, Wu MQ, Chen SQ, et al., 2000. A calibration method of phased array radar based on FFT. Chin J Radio Sci, 15(2):221-224(in Chinese).

[37]Lu JG, Wang W, Qi MQ, 2013. Grating lobes suppression in phased array antenna for space-borne SAR applications. J Microw, 29(5-6):135-138(in Chinese).

[38]Lu JG, Zhong XL, Chen RY, 2015. Very-high-resolution spaceborne spotlight SAR imaging with the "stop-and-go" assumption invalid. Radar Sci Technol, 13(5):449-456(in Chinese).

[39]Lu JG, Zhang HT, Wang W, et al., 2019. Broadband dual-polarized waveguide slot filtenna array with low cross polarization and high efficiency. IEEE Trans Antenn Propag, 67(1):151-159.

[40]Lu JG, Wang W, Lu XP, et al., 2020. Research on three matching problems in waveguide slot antenna. Radar Sci Technol, 18(2):115-123(in Chinese).

[41]Lu JG, Wang W, Wang XL, 2021. Active Array Antenna for High Resolution Microwave Imaging Radar. National Defense Industry Press, Beijing, China(in Chinese).

[42]Lu JG, Zhang HT, Wang W, et al., 2022. An efficient technique to realize low-profile dual-band multi-polarized shared-aperture slot antenna array. Int J RF Microw Comput Aided Eng, 32(12):e23458.

[43]Monier-Vinard E, Rogie B, Bissuel V, et al., 2017. State of the art of thermal characterization of electronic components using computational fluid dynamic tools. Int J Numer Methods Heat Fluid Flow, 27(11):2433-2450.

[44]Moulder WF, Sertel K, Volakis JL, 2013. Ultrawideband superstrate-enhanced substrate-loaded array with integrated feed. IEEE Trans Antenn Propag, 61(11):5802-5807.

[45]Munk B, Taylor R, Durharn T, et al., 2003. A low-profile broadband phased array antenna. Proc IEEE Antennas and Propagation Society International Symp, p.448-451.

[46]Nishikawa I, Ueno M, Ishizuka Y, et al., 2006. Dynamic characteristics of pulse rate control of a POL converter. Proc 28th Int Telecommunications Energy Conf, p.1-6.

[47]Novak MH, Miranda FA, Volakis JL, 2018. Ultra-wideband phased array for millimeter-wave ISM and 5G bands, realized in PCB. IEEE Trans Antenn Propag, 66(12):6930-6938.

[48]Qian JW, Zhu HR, Tang M, et al., 2021. A 24 GHz microstrip comb array antenna with high sidelobe suppression for radar sensor. IEEE Antenn Wirel Propag Lett, 20(7):1220-1224.

[49]Reiskarimian N, Zhou J, Krishnaswamy H, 2017. A CMOS passive LPTV nonmagnetic circulator and its application in a full-duplex receiver. IEEE J Sol-State Circ, 52(5):1358-1372.

[50]Sabharwal A, Schniter P, Guo DN, et al., 2014. In-band full-duplex wireless: challenges and opportunities. IEEE J Sel Areas Commun, 32(9):1637-1652.

[51]Shen W, Zhu HR, 2020. Vertically stacked trisection SIW filter with controllable transmission zeros. IEEE Microw Wirel Compon Lett, 30(3):237-240.

[52]Shin J, Schaubert DH, 1999. A parameter study of stripline-fed Vivaldi notch-antenna arrays. IEEE Trans Antenn Propag, 47(5):879-886.

[53]Singh S, Kukal T, 2020. LTCC PoP technology-based novel approach for mm-wave 5G system for next generation communication system. Proc 70th Electronic Components and Technology Conf, p.1973-1978.

[54]Syed WH, Neto A, 2013. Front-to-back ratio enhancement of planar printed antennas by means of artificial dielectric layers. IEEE Trans Antenn Propag, 61(11):5408-5416.

[55]Tang J, Lee J, Roh J, 2019. Low-power fast-transient capacitor-less LDO regulator with high slew-rate class-AB amplifier. IEEE Trans Circ Syst II Exp Briefs, 66(3):462-466.

[56]Zhang KC, Guliani A, Ogrenci-Memik S, et al., 2018. Machine learning-based temperature prediction for runtime thermal management across system components. IEEE Trans Parall Distrib Syst, 29(2):405-419.

[57]Zheng YY, Sheng WX, 2017. Compact lumped-element LTCC bandpass filter for low-loss VHF-band applications. IEEE Microw Wirel Compon Lett, 27(12):1074-1076.

[58]Zhu HR, Mao JF, 2013. Localized planar EBG structure of CSRR for ultrawideband SSN mitigation and signal integrity improvement in mixed-signal systems. IEEE Trans Compon Packag Manuf Technol, 3(12):2092-2100.

[59]Zhu HR, Wang J, 2023a. Miniaturized, ultrawideband and low insertion loss Ku-band GaAs on-chip limiter by improved π‍-type topology with capacitive loading. IEEE Trans Electron Dev, 70(3):971-978.

[60]Zhu HR, Wang WT, 2023b. High selectivity millimeter-wave on-chip band-pass filter with semi-lumped dual-mode resonator by using GaAs technology. IEEE Electron Dev Lett, 44(5):729-732.

[61]Zhu HR, Li JJ, Mao JF, 2013. Ultra-wideband suppression of SSN using localized topology with CSRRs and embedded capacitance in high-speed circuits. IEEE Trans Microw Theory Techn, 61(2):764-772.

[62]Zhu HR, Sun YF, Wu XL, 2018. A compact tapered EBG structure with sharp selectivity and wide stopband by using CSRR. IEEE Microw Wirel Compon Lett, 28(9):771-773.

[63]Zhu HR, Sun YF, Huang ZX, et al., 2019. A compact EBG structure with etching spiral slots for ultrawideband simultaneous switching noise mitigation in mixed signal systems. IEEE Trans Compon Packag Manuf Technol, 9(8):1559-1567.

[64]Zhu HR, Ning XY, Huang ZX, et al., 2021a. Miniaturized, ultra-wideband and high isolation single pole double throw switch by using π-type topology in GaAs pHEMT technology. IEEE Trans Circ Syst II Exp Briefs, 68(1):191-195.

[65]Zhu HR, Zhao YL, Lu JG, 2021b. A novel vertical wire-bonding compensation structure adaptively modeled and optimized with GRNN and GA methods for system in package. IEEE Trans Electromagn Compat, 63(6):2082-2092.

[66]Zhu HR, Li K, Lu JG, et al., 2022. Millimeter-wave active integrated semielliptic CPW slot antenna with ultrawideband compensation of ball grid array interconnection. IEEE Trans Compon Packag Manuf Technol, 12(1):111-120.

[67]Zhu HR, Wang J, Tang M, 2023. Compact, high power capacity, and low insertion loss millimeter-wave on-chip limiting filter with GaAs PIN technology. IEEE Trans Circ Syst I Reg Papers, 70(3):1175-1188.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE