CLC number: TH113
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2018-12-25
Cited: 0
Clicked: 6272
Citations: Bibtex RefMan EndNote GB/T7714
Xin Zhang, Tian-hang Zhang, Yun-ge Hou, Kai Zhu, Zhi-yi Huang, Ke Wu. Local loss model of dividing flow in a bifurcate tunnel with a small angle[J]. Journal of Zhejiang University Science A,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.A1800298 @article{title="Local loss model of dividing flow in a bifurcate tunnel with a small angle", %0 Journal Article TY - JOUR
Abstract: In this manuscript, the authors analyse and quantify the local loss of flow in a bifurcate tunnel using numerical modelling, and subsequently derive empirical expressions for practical use. The topic is interesting and closely relevant real-world applications.
小夹角分叉隧道分流局部损失模型创新点:1. 揭示气流在小角度分叉结构中的流动分离特征及损失机制; 2. 提出流向偏转角假设,建立可供设计使用的分叉隧道分流局部损失预测模型. 方法:1. 通过数值模拟,获得隧道分叉处的流动特征(图5、6a和6d),以及分流局部损失系数随分流比及 夹角的变化规律(图6b和6c); 2. 通过理论推导,构建小夹角分叉结构的分流局部损失系数预测公式(公式(18)和(21)); 3. 通过现场实测,验证预测公式的可靠性(图15). 结论:1. 空气在隧道分叉处的分流将导致流速和流向的变化; 当分流比β较小时,流动分离出现在靠近分叉点一侧的主线边壁和远离分叉点一侧的匝道边壁; 当β较大时,流动分离出现在远离分叉点一侧的主线边壁和靠近分叉点一侧的匝道边壁. 2. 当分流后主线与匝道的流量比q等于两者的面积比ϕ时,主线及匝道的分流局部损失系数ξ12和ξ13最小; 当q>ϕ时,ξ12和ξ13均随β的增大而减小,且ξ13随着θ的增大而增大; 当q<ϕ时,ξ12和ξ13均随β的增大而增大,且ξ13随着θ的增大而减小. 3. 基于隧道分叉处的流动分离机制,提出了空气流向偏转角假设,构建了可用于预测分叉隧道分流局部损失系数的理论公式,与已有文献公式相比,具有更好的预测精度. 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Abdulwahhab M, Injeti NK, Dakhi SF, 2013. Numerical prediction of pressure loss of fluid in a T-junction. International Journal of Energy and Environment, 4(2):253-264. ![]() [2]Bassett MD, Winterbone DE, Pearson RJ, 2001. Calculation of steady flow pressure loss coefficients for pipe junctions. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 215(8):861-881. ![]() [3]Costa NP, Maia R, Proenca MF, et al., 2006. Edge effects on the flow characteristics in a 90deg tee junction. Journal of Fluids Engineering, 128(6):1204-1217. ![]() [4]Du T, Yang D, Peng SN, et al., 2015. A method for design of smoke control of urban traffic link tunnel (UTLT) using longitudinal ventilation. Tunnelling and Underground Space Technology, 48:35-42. ![]() [5]Ghostine R, Vazquez J, Terfous A, et al., 2013. A comparative study of 1D and 2D approaches for simulating flows at right angled dividing junctions. Applied Mathematics and Computation, 219(10):5070-5082 ![]() [6]Hager WH, 1984. An approximate treatment of flow in branches and bends. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 198(4):63-69. ![]() [7]Hager WH, 2010. Losses in flow. Wastewater Hydraulics: Theory and Practice. Springer, Berlin, Heidelberg, p.17-54. ![]() [8]Hong SW, Exadaktylos V, Lee IB, et al., 2017. Validation of an open source CFD code to simulate natural ventilation for agricultural buildings. Computers and Electronics in Agriculture, 138:80-91. ![]() [9]Idelchik IE, Steinberg MO, Malyavskaya GR, et al., 2008. Handbook of Hydraulic Resistance. Laurier Books Ltd., New York, USA, p.413-501. ![]() [10]Itō H, Imai K, 1973. Energy losses at 90° pipe junctions. Journal of the Hydraulics Division, 99(9):1353-1368. ![]() [11]Iwanami S, Tetsuo S, Hiroshi K, 2008. Study on flow characteristics in right-angled pipe fittings: 1st report, on case of water flow. Transactions of the Japan Society of Mechanical Engineers, 35(269):97-106. ![]() [12]Li JM, Liu SS, Li YF, et al., 2012. Experimental study of smoke spread in titled urban traffic tunnels fires. Procedia Engineering, 45:690-694. ![]() [13]Li L, Li YL, Huang JT, et al., 2001. Numerical simulation and experimental study on water flow in Y-type tube. Journal of Hydraulic Engineering, (3):49-53 (in Chinese). ![]() [14]Li Q, Chen C, Deng YW, et al., 2015. Influence of traffic force on pollutant dispersion of CO, NO and particle matter (PM2.5) measured in an urban tunnel in Changsha, China. Tunnelling and Underground Space Technology, 49:400-407. ![]() [15]Liao L, Yan L, Huang W, et al., 2018. Mode transition process in a typical strut-based scramjet combustor based on a parametric study. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 19(6):431-451. ![]() [16]Lin GH, Ferng YM, 2016. Investigating thermal mixing and reverse flow characteristics in a T-junction using CFD methodology. Applied Thermal Engineering, 102:733-741. ![]() [17]Lukiyanto YB, Wardana ING, Wijayanti W, et al., 2016. Secondary flow behaviour in various rounded-edge bifurcation T-Junctions and its relation to head loss. International Journal of Fluid Mechanics Research, 43(3):206-217. ![]() [18]Mangani L, Buchmayr M, Darwish M, 2014. Development of a novel fully coupled solver in OpenFOAM: steady-state incompressible turbulent flows. Numerical Heat Transfer, Part B: Fundamentals, 66(1):1-20. ![]() [19]Matthew GD, 1975. Simple approximate treatments of certain incompressible duct flow problems involving separation. Journal of Mechanical Engineering Science, 17(2):57-64. ![]() [20]McKeon BJ, Li J, Jiang W, et al., 2004. Further observations on the mean velocity distribution in fully developed pipe flow. Journal of Fluid Mechanics, 501:135-147. ![]() [21]Meng Q, Qu XB, Wang XC, et al., 2011. Quantitative risk assessment modeling for nonhomogeneous urban road tunnels. Risk Analysis, 31(3):382-403. ![]() [22]Mignot E, Zeng C, Dominguez G, et al., 2013. Impact of topographic obstacles on the discharge distribution in open-channel bifurcations. Journal of Hydrology, 494: 10-19. ![]() [23]Miller DS, 1971. Internal Flow: a Guide to Losses in Pipe and Duct Systems. British Hydromechanics Research Association, Cranfield, UK, p.303-360. ![]() [24]Mohamed MS, Larue JC, 1990. The decay power law in grid-generated turbulence. Journal of Fluid Mechanics, 219:195-214. ![]() [25]Momplot A, Kouyi GL, Mignot E, et al., 2017. Typology of the flow structures in dividing open channel flows. Journal of Hydraulic Research, 55(1):63-71. ![]() [26]MOT (Ministry of Transport of the People’s Republic of China), 2018. Design Specification for Highway Alignment, JTG D20-2017. MOT (in Chinese). ![]() [27]Nan CZ, Ma JM, Luo Z, et al., 2015. Numerical study on the mean velocity distribution law of air backflow and the effective interaction length of airflow in forced ventilated tunnels. Tunnelling and Underground Space Technology, 46:104-110. ![]() [28]Nazif HR, Tabrizi HB, 2011. Comparison of standard turbulent wall function with a non-equilibrium wall model. International Journal of Fluid Mechanics Research, 38(6):499-508. ![]() [29]Oka K, Itō H, 2005. Energy losses at tees with large area ratios. Journal of Fluids Engineering, 127(1):110-116. ![]() [30]Reynolds O, 1895. On the dynamical theory of incompressible viscous fluids and the determination of the criterion. Philosophical Transactions of the Royal Society of London. A, 186:123-164. ![]() [31]Shi X, Lü HX, Zhu DL, et al., 2013. Flow resistance and characteristics of PVC tee pipes. Transactions of the Chinese Society for Agricultural Machinery, 44(1):73-79 (in Chinese). ![]() [32]Shih TH, Zhu J, Lumley JL, 1994. A new Reynolds stress algebraic equation model. Computer Methods in Applied Mechanics and Engineering, 125(1-4):287-302. ![]() [33]Shih TH, Liou WW, Shabbir A, et al., 1995. A new k-ϵ eddy viscosity model for high Reynolds number turbulent flows. Computers & Fluids, 24(3):227-238. ![]() [34]Song Y, Li XB, Wang SH, et al., 2016. Experimental study on determination and correction method of wind speed in wind station of rectangular roadway based on LDA. Journal of Safety Science and Technology, 12(1):169-175 (in Chinese). ![]() [35]Tan Z, Gao HO, 2015. Traffic control for air quality management and congestion mitigation in complex urban vehicular tunnels. Transportation Research Part C: Emerging Technologies, 58:13-28. ![]() [36]Tavoularis S, Corrsin S, 1981. Experiments in nearly homogeneous turbulent shear flow with a uniform mean temperature gradient. Part 2. The fine structure. Journal of Fluid Mechanics, 104:349-367. ![]() [37]Versteeg HK, Malalasekera W, 1995. An Introduction to Computational Fluid Dynamics: the Finite Volume Method. Longman Scientific & Technical, New York, USA, p.66-69. ![]() [38]Wu K, Huang ZY, Zhang JS, et al., 2017. An Urban Tunnel Ventilation Test Device with a Ramp. CN Patent 104564122B (in Chinese). ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>