CLC number:
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2024-01-04
Cited: 0
Clicked: 9511
Citations: Bibtex RefMan EndNote GB/T7714
Wei WANG, Yanfeng ZHENG, Jingzhe TANG, Chao YANG, Yaozhi LUO. GPU-accelerated vector-form particle-element method for 3D elastoplastic contact of structures[J]. Journal of Zhejiang University Science A,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.A2200311 @article{title="GPU-accelerated vector-form particle-element method for 3D elastoplastic contact of structures", %0 Journal Article TY - JOUR
结构三维弹塑性接触问题的图形处理器并行有限质点法求解机构:1浙江大学,建筑工程学院,中国杭州,310058;2浙江大学,平衡建筑研究中心,中国杭州,310028;3浙江大学建筑设计研究院有限公司,中国杭州,310028;4浙江省空间结构重点实验室,中国杭州,310058 目的:结构的三维弹塑性接触问题通常包含强非线性,且计算比较耗时。为解决这类问题,本文提出基于图形处理器加速的有限质点法。 创新点:1.发展基于有限质点法的六面体缩减积分单元;2.提出结构的三维并行接触算法。 方法:1.发展基于有限质点法的六面体缩减积分单元,并采用沙漏控制技术,用于模拟结构的弹塑性行为;2.提出结构的三维并行接触算法,将包含接触面的三维空间分解为立方体单元格,仅在相邻单元格之间进行接触搜索,并使用链式数据结构存储接触质点;3.通过基于图形处理器的并行计算技术对算法进行加速。 结论:1.本文方法与有限元软件Abaqus/Explicit相比,在总计算时间和接触计算时间上分别提升效率约80倍和340倍;2.本文方法的有效性和计算效率都得到了验证。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]BartezzaghiA, CremonesiM, ParoliniN, et al., 2015. An explicit dynamics GPU structural solver for thin shell finite elements. Computers & Structures, 154:29-40. ![]() [2]BensonDJ, HallquistJO, 1990. A single surface contact algorithm for the post-buckling analysis of shell structures. Computer Methods in Applied Mechanics and Engineering, 78(2):141-163. ![]() [3]BiabanakiSOR, KhoeiAR, WriggersP, 2014. Polygonal finite element methods for contact-impact problems on non-conformal meshes. Computer Methods in Applied Mechanics and Engineering, 269:198-221. ![]() [4]BorjaRI, 2013. Plasticity: Modeling & Computation. Springer, Berlin, Germany. ![]() [5]CaiY, WangGP, LiGY, et al., 2015. A high performance crashworthiness simulation system based on GPU. Advances in Engineering Software, 86:29-38. ![]() [6]CaoXG, CaiY, CuiXY, 2020. A parallel numerical acoustic simulation on a GPU using an edge-based smoothed finite element method. Advances in Engineering Software, 148:102835. ![]() [7]ChenH, LeiZ, ZangMY, 2014. LC-Grid: a linear global contact search algorithm for finite element analysis. Computational Mechanics, 54(5):1285-1301. ![]() [8]ChengJ, GrossmanM, McKercherT, 2014. Professional CUDA C Programming. John Wiley & Sons, Indianapolis, USA. ![]() [9]DongYK, WangD, RandolphMF, 2015. A GPU parallel computing strategy for the material point method. Computers and Geotechnics, 66:31-38. ![]() [10]FlanaganDP, BelytschkoT, 1981. A uniform strain hexahedron and quadrilateral with orthogonal hourglass control. International Journal for Numerical Methods in Engineering, 17(5):679-706. ![]() [11]GaoB, WuJ, JiaPC, et al., 2022. Experimental and numerical investigation of the polyurea-coated ultra-high-performance concrete (UHPC) column under lateral impact loading. International Journal of Structural Stability and Dynamics, 22(5):2250037. ![]() [12]HallquistJO, GoudreauGL, BensonDJ, 1985. Sliding interfaces with contact-impact in large-scale Lagrangian computations. Computer Methods in Applied Mechanics and Engineering, 51(1-3):107-137. ![]() [13]HeschC, BetschP, 2011. Transient 3D contact problems-NTS method: mixed methods and conserving integration. Computational Mechanics, 48(4):437-449. ![]() [14]HouJM, ShiBS, LiangQH, et al., 2021. A graphics processing unit-based robust numerical model for solute transport driven by torrential flow condition. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 22(10):835-850. ![]() [15]KangH, KimJ, 2015. Progressive collapse of steel moment frames subjected to vehicle impact. Journal of Performance of Constructed Facilities, 29(6):04014172. ![]() [16]LacastaA, Morales-HernándezM, MurilloJ, et al., 2014. An optimized GPU implementation of a 2D free surface simulation model on unstructured meshes. Advances in Engineering Software, 78:1-15. ![]() [17]LuoYZ, YangC, 2014. A vector-form hybrid particle-element method for modeling and nonlinear shell analysis of thin membranes exhibiting wrinkling. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 15(5):331-350. ![]() [18]NetoDM, OliveiraMC, MenezesLF, 2017. Surface smoothing procedures in computational contact mechanics. Archives of Computational Methods in Engineering, 24(1):37-87. ![]() [19]SeitzA, PoppA, WallWA, 2015. A semi-smooth newton method for orthotropic plasticity and frictional contact at finite strains. Computer Methods in Applied Mechanics and Engineering, 285:228-254. ![]() [20]SharmaA, MishraR, JainS, et al., 2018. Deformation behavior of single and multi-layered materials under impact loading. Thin-Walled Structures, 126:193-204. ![]() [21]SimoJC, HughesTJR, 1998. Computational Inelasticity. Springer, New York, USA. ![]() [22]TangJZ, ZhengYF, YangC, et al., 2020. Parallelized implementation of the finite particle method for explicit dynamics in GPU. Computer Modeling in Engineering & Sciences, 122(1):5-31. ![]() [23]WangSQ, ZhangQ, JiSY, 2021. GPU-based parallel algorithm for super-quadric discrete element method and its applications for non-spherical granular flows. Advances in Engineering Software, 151:102931. ![]() [24]WangW, ZhengYF, TangJZ, et al., 2021. A GPU-based parallel algorithm for 2D large deformation contact problems using the finite particle method. Computer Modeling in Engineering & Sciences, 129(2):595-626. ![]() [25]WriggersP, 2006. Computational Contact Mechanics. Springer, Berlin, Germany. ![]() [26]YangC, ShenYB, LuoYZ, 2014. An efficient numerical shape analysis for light weight membrane structures. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 15(4):255-271. ![]() [27]YuY, LuoYZ, 2009. Finite particle method for kinematically indeterminate bar assemblies. Journal of Zhejiang University-SCIENCE A, 10(5):669-676. ![]() [28]ZangMY, GaoW, LeiZ, 2011. A contact algorithm for 3D discrete and finite element contact problems based on penalty function method. Computational Mechanics, 48(5):541-550. ![]() [29]ZhengYF, WanHP, ZhangJY, et al., 2021. Local-coordinate representation for spatial revolute clearance joints based on a vector-form particle-element method. International Journal of Structural Stability and Dynamics, 21(7):2150093. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>