CLC number:
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2023-09-20
Cited: 0
Clicked: 1573
Qun JI, Hao LYU, Hang YANG, Qi WEI, Rongjun CHENG. Bifurcation control of solid angle car-following model through a time-delay feedback method[J]. Journal of Zhejiang University Science A,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.A2300026 @article{title="Bifurcation control of solid angle car-following model through a time-delay feedback method", %0 Journal Article TY - JOUR
通过延时反馈法对实角汽车跟驰模型进行分叉控制机构:1宁波大学,海运学院,中国宁波,315211;2宁波财经学院,中国宁波,315175 目的:随着城市化进程的不断发展,交通事故和交通拥堵越来越成为城市发展的障碍。本文旨在设计一种响应延迟反馈控制来抑制不稳定因素引起的分岔,从而抑制交通流量振荡并提高模型对车辆轨迹的拟合程度。 创新点:1.采用定积分方法来确定反应延迟和反馈增益的稳定区间;2.设计一种抑制交通拥堵和稳定交通流量的控制策略。 方法:1.通过对线性分析和分岔分析的比较,确定稳定区的临界范围;2.运用定积分的方法模拟各参数联合控制下的精确和稳定范围;3.通过校准得到的最优反馈增益和时滞参数位于控制系统的稳定区域,从而验证该控制系统的合理性和可行性。 结论:1.本文设计的响应延迟反馈控制系统可以用来抑制或削弱交通系统的分岔,从而抑制交通拥堵;2.校准得到的最优反馈增益和时滞参数位于控制系统的稳定区域;3.合理的反馈增益和延迟设置可以有效地提高交通流量的稳定性。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]AndersenGJ, SauerCW, 2007. Optical information for car following: the driving by Visual Angle (DVA) model. Human Factors: The Journal of the Human Factors and Ergonomics Society, 49(5):878-896. ![]() [2]BandoM, HasebeK, NakayamaA, et al., 1995. Dynamical model of traffic congestion and numerical simulation. Physical Review E, 51(2):1035-1042. ![]() [3]BandoM, HasebeK, NakanishiK, et al., 1998. Analysis of optimal velocity model with explicit delay. Physical Review E, 58(5):5429-5435. ![]() [4]ChengRJ, LiuFX, GeHX, 2017. A new continuum model based on full velocity difference model considering traffic jerk effect. Nonlinear Dynamics, 89(1):639-649. ![]() [5]DasS, MauryaAK, 2022. A car-following model considering driver’s instantaneous reaction delay in nonlane-based traffic environments. Journal of Transportation Engineering, Part A: Systems, 148(8):1-13. ![]() [6]FangYL, ShiZK, CaoJL, 2015. Congestion phenomenon analysis and delayed-feedback control in a modified coupled map traffic flow model containing the velocity difference. Communications in Nonlinear Science and Numerical Simulation, 23(1-3):175-184. ![]() [7]GeHX, ZhengPJ, LoSM, et al., 2014. TDGL equation in lattice hydrodynamic model considering driver’s physical delay. Nonlinear Dynamics, 76(1):441-445. ![]() [8]GeroliminisN, KarlaftisMG, SkabardonisA, 2009. A spatial queuing model for the emergency vehicle districting and location problem. Transportation Research Part B: Methodological, 43(7):798-811. ![]() [9]GuanXY, ChengRJ, GeHX, 2022. Bifurcation analysis of visual angle model with anticipated time and stabilizing driving behavior. Chinese Physics B, 31:070507. ![]() [10]HelbingD, TreiberM, 1998. Gas-kinetic-based traffic model explaining observed hysteretic phase transition. Physical Review Letters, 81(14):3042-3045. ![]() [11]HelbingD, TilchB, 1998. Generalized force model of traffic dynamics. Physical Review E, 58(1):133-138. ![]() [12]HermanR, MontrollEW, PottsRB, et al., 1959. Traffic dynamics: analysis of stability in car following. Operations Research, 7(1):86-106. ![]() [13]JiangN, YuB, CaoF, et al., 2021. An extended visual angle car-following model considering the vehicle types in the adjacent lane. Physica A: Statistical Mechanics and Its Applications, 566:125665. ![]() [14]JiangR, WuQS, ZhuZJ, 2001. Full velocity difference model for a car-following theory. Physical Review E, 64(1):017101. ![]() [15]JinS, WangDH, HuangZY, et al., 2011. Visual angle model for car-following theory. Physica A: Statistical Mechanics and Its Applications, 390(11):1931-1940. ![]() [16]JinYF, XuM, 2016. Stability analysis in a car-following model with reaction-time delay and delayed feedback control. Physica A: Statistical Mechanics and Its Applications, 459:107-116. ![]() [17]KongDW, SunLS, LiJ, et al., 2021. Modeling cars and trucks in the heterogeneous traffic based on car-truck combination effect using cellular automata. Physica A: Statistical Mechanics and Its Applications, 562:125329. ![]() [18]KonishiK, HiraiM, KokameH, 1998. Decentralized delayed-feedback control of a coupled map model for open flow. Physical Review E, 58(3):3055-3059. ![]() [19]KonishiK, KokameH, HirataK, 1999. Coupled map car-following model and its delayed-feedback control. Physical Review E, 60(4):4000-4007. ![]() [20]KonishiK, KokameH, HirataK, 2000. Decentralized delayed-feedback control of an optimal velocity traffic model. The European Physical Journal B-Condensed Matter and Complex Systems, 15(4):715-722. ![]() [21]MaDF, HanYY, JinS, 2020. Solid angle car following model. Chinese Physics B, 29(6):060504. ![]() [22]MichaelsRM, CozanLW, 1963. Perceptual and field factors causing lateral displacement. Highway Research Record, 25:1-13. ![]() [23]MilanésV, ShladoverSE, 2014. Modeling cooperative and autonomous adaptive cruise control dynamic responses using experimental data. Transportation Research Part C: Emerging Technologies, 48:285-300. ![]() [24]NgoduyD, LiTL, 2021. Hopf bifurcation structure of a generic car-following model with multiple time delays. Transportmetrica A: Transport Science, 17(4):878-896. ![]() [25]OssenS, HoogendoornSP, GorteBGH, 2006. Interdriver differences in car-following: a vehicle trajectory-based study. Transportation Research Record, 1965(1):121-129. ![]() [26]SunJ, ZhengZD, SunJ, 2018. Stability analysis methods and their applicability to car-following models in conventional and connected environments. Transportation Research Part B: Methodological, 109:212-237. ![]() [27]TreiberM, KestingA, HelbingD, 2006. Delays, inaccuracies and anticipation in microscopic traffic models. Physica A: Statistical Mechanics and Its Applications, 360(1):71-88. ![]() [28]van WinsumW, 1999. The human element in car following models. Transportation Research Part F: Traffic Psychology and Behaviour, 2(4):207-211. ![]() [29]WiedemannR, 1974. Simulation of Road Traffic in Traffic Flow. University of Karlsruhe, Karlsruhe, Germany. ![]() [30]XieDF, ZhaoXM, HeZB, 2019. Heterogeneous traffic mixing regular and connected vehicles: modeling and stabilization. IEEE Transactions on Intelligent Transportation Systems, 20(6):2060-2071. ![]() [31]YuSW, LiuQL, LiXH, 2013. Full velocity difference and acceleration model for a car-following theory. Communications in Nonlinear Science and Numerical Simulation, 18(5):1229-1234. ![]() [32]ZhangXZ, ShiZK, ChenJZ, et al., 2023. A bi-directional visual angle car-following model considering collision sensitivity. Physica A: Statistical Mechanics and Its Applications, 609:128326. ![]() [33]ZhangYC, XueY, ZhangP, et al., 2019. Bifurcation analysis of traffic flow through an improved car-following model considering the time-delayed velocity difference. Physica A: Statistical Mechanics and Its Applications, 514:133-140. ![]() [34]ZhaoXM, GaoZY, 2006. A control method for congested traffic induced by bottlenecks in the coupled map car-following model. Physica A: Statistical Mechanics and Its Applications, 366:513-522. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>