CLC number:
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2024-06-27
Cited: 0
Clicked: 1494
Citations: Bibtex RefMan EndNote GB/T7714
Liang LU, Zhongdong LIANG, Yuming LIU, Zhipeng WANG, Shohei RYU. Geometrical transition properties of vortex cavitation and associated flow-choking characteristics in poppet valves[J]. Journal of Zhejiang University Science A,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.A2300114 @article{title="Geometrical transition properties of vortex cavitation and associated flow-choking characteristics in poppet valves", %0 Journal Article TY - JOUR
锥阀漩涡空化几何形态变迁与流量饱和特性机构:1同济大学,机械与能源工程学院,中国上海,201804;2同济大学,教育部自主智能无人系统前沿科学中心,中国上海,201210;3日立建机株式会社,技术研究实验室,日本土浦,300-0013 目的:伴随数字阀在流体控制中日益体现的高端品质,锥阀作为数字阀的主要阀芯结构,其空化与流量饱和问题日益受到重视。本文借助实验与仿真手段,旨在揭示漩涡空化成形机理及其伴随孔口长径比形态变迁的物理规律,以及大尺度空化对流量饱和的影响特性,为高品质锥阀结构设计提供基础依据。 创新点:1.应用流束收缩理论定义锥阀固定型与离散型空化的漩涡成型机理与形态变迁规律;2.使用大涡模拟合理复现空化形态并揭示空化对流量饱和的影响规律。 方法:1.通过可视化实验,获得锥阀空化的几何形态,并验证数值模型的合理性;2.通过数值计算,研究空化形态随锥阀结构的变化规律;3.利用阀口开度、密封长度和阀芯半锥角三个参数定义长径比无量纲指标,衡量空化形态与流量饱和特性的变化规律。 结论:1.锥阀阀口流束内外收缩性质的不同,导致阀口内部固定漩涡与阀口下游离散漩涡的差异,进而形成固定漩涡空化和离散漩涡空化的形态区别。2.使用阀口开度、密封长度和阀芯半锥角定义阀口等效长径比,可用于评价空化几何形态的变迁规律。3.固定漩涡空化对流量饱和的影响程度较大;离散漩涡空化因完整的溃灭过程而对流量饱和影响较小。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]AltimiraM, FuchsL, 2015. Numerical investigation of throttle flow under cavitating conditions. International Journal of Multiphase Flow, 75:124-136. ![]() [2]BrennenCE, 2014. Cavitation and Bubble Dynamics. Cambridge University Press, Cambridge, UK, p.10-22. ![]() [3]ChiavolaO, FrattiniE, PalmieriF, et al., 2019. Poppet valve performance under cavitating conditions. AIP Conference Proceedings, 2191(1):020045. ![]() [4]FiloG, LisowskiE, RajdaJ, 2021. Design and flow analysis of an adjustable check valve by means of CFD method. Energies, 14(8):2237. ![]() [5]FinnemoreEJ, FranziniJB, 2002. Fluid Mechanics with Engineering Applications. 10th Edition. McGraw-Hill Education, New York, USA, p.505. ![]() [6]GaoQ, ZhuYC, ChenXM, et al., 2019. CFD simulation on flow field of a large flow rate high speed on/off valve. Proceedings of the 8th International Conference on Fluid Power and Mechatronics, p.224-230. ![]() [7]GaoQ, ZhuY, LiuJH, 2022. Dynamics modelling and control of a novel fuel metering valve actuated by two binary-coded digital valve arrays. Machines, 10(1):55. ![]() [8]GhosalS, MoinP, 1995. The basic equations for the large eddy simulation of turbulent flows in complex geometry. Journal of Computational Physics, 118(1):24-37. ![]() [9]HanMX, LiuYS, WuDF, et al., 2017. A numerical investigation in characteristics of flow force under cavitation state inside the water hydraulic poppet valves. International Journal of Heat and Mass Transfer, 111:1-16. ![]() [10]HaoQH, WuWR, TianGT, 2022. Study on reducing both flow force and cavitation in poppet valves. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 236(23):11160-11179. ![]() [11]HinzeJO, 1975. Turbulence. McGraw-Hill, New York, USA. ![]() [12]HuoJL, LuanXY, GongYW, et al., 2021. Numerical study of bund overtopping phenomena after a catastrophic tank failure using the axisymmetric approach. Process Safety and Environmental Protection, 153:464-471. ![]() [13]IravaniM, ToghraieD, 2020. Design a high-pressure test system to investigate the performance characteristics of ball valves in a compressible choked flow. Measurement, 151:107200. ![]() [14]KumagaiK, RyuS, OtaM, et al., 2016. Investigation of poppet valve vibration with cavitation. International Journal of Fluid Power, 17(1):15-24. ![]() [15]LiBB, ZhaoQ, LiHY, et al., 2021. Analysis method of the cavitation vibration signals in poppet valve based on EEMD. Advances in Mechanical Engineering, 13(2):1687814021998114. ![]() [16]LuL, ZouJ, FuX, et al., 2009. Cavitating flow in non-circular opening spool valves with U-grooves. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 223(10):2297-2307. ![]() [17]LuL, XieSH, YinYB, et al., 2020. Experimental and numerical analysis on the surge instability characteristics of the vortex flow produced large vapor cavity in u-shape notch spool valve. International Journal of Heat and Mass Transfer, 146:118882. ![]() [18]LuL, XuYP, LiMR, et al., 2022. Analysis of fretting wear behavior of unloading valve of gasoline direct injection high pressure pump. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 23:314-328. ![]() [19]LuL, WangJ, LiMR, et al., 2022. Experimental and numerical analysis on vortex cavitation morphological characteristics in u-shape notch spool valve and the vortex cavitation coupled choked flow conditions. International Journal of Heat and Mass Transfer, 189:122707. ![]() [20]ManninenM, TaivassaloV, KallioS, 1996. On the Mixture Model for Multiphase Flow. Technical Report No. VTT-PUB-288, Technical Research Centre of Finland, Espoo, Finland. ![]() [21]MartelliM, GessiS, MassarottiGP, et al., 2017. On peculiar flow characteristics in hydraulic orifices. ASME/BATH Symposium on Fluid Power and Motion Control, Article V001T001A057. ![]() [22]MinW, WangHY, ZhengZ, et al., 2020. Visual experimental investigation on the stability of pressure regulating poppet valve. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 234(12):2329-2348. ![]() [23]NicoudF, DucrosF, 1999. Subgrid-scale stress modelling based on the square of the velocity gradient tensor. Flow, Turbulence and Combustion, 62(3):183-200. ![]() [24]NourazarS, SafaviM, 2017. Two-dimensional large-eddy simulation of density-current flow propagating up a slope. Journal of Hydraulic Engineering, 143(9):04017035. ![]() [25]PanM, PlummerA, 2018. Digital switched hydraulics. Frontiers of Mechanical Engineering, 13(2):225-231. ![]() [26]RoachePJ, 1998. Verification and Validation in Computational Science and Engineering. Hermosa Publishers, Albuquerque, USA. ![]() [27]RoohiE, ZahiriAP, Passandideh-FardM, 2013. Numerical simulation of cavitation around a two-dimensional hydrofoil using VOF method and LES turbulence model. Applied Mathematical Modelling, 37(9):6469-6488. ![]() [28]SchnerrGH, SauerJ, 2001. Physical and numerical modeling of unsteady cavitation dynamics. Proceedings of the 4th International Conference on Multiphase flow, p.1-12. ![]() [29]SinghalAK, AthavaleMM, LiHY, et al., 2002. Mathematical basis and validation of the full cavitation model. Journal of Fluids Engineering, 124(3):617-624. ![]() [30]StosiakM, SkačkauskasP, TowarnickiK, et al., 2023. Analysis of the impact of vibrations on a micro-hydraulic valve using a modified induction algorithm. Machines, 11(2):184. ![]() [31]TamburranoP, PlummerAR, DistasoE, et al., 2019. A review of direct drive proportional electrohydraulic spool valves: industrial state-of-the-art and research advancements. Journal of Dynamic Systems, Measurement, and Control, 141(2):020801. ![]() [32]WangS, ZhangB, ZhongQ, et al., 2017. Study on control performance of pilot high-speed switching valve. Advances in Mechanical Engineering, 9(7). ![]() [33]YuanC, SongJC, LiuMH, 2019a. Investigation of flow dynamics and governing mechanism of choked flow for cavitating jet in a poppet valve. International Journal of Heat and Mass Transfer, 129:113-131. ![]() [34]YuanC, SongJC, ZhuLS, et al., 2019b. Numerical investigation on cavitating jet inside a poppet valve with special emphasis on cavitation-vortex interaction. International Journal of Heat and Mass Transfer, 141:1009-1024. ![]() [35]YuanC, ZhuLS, LiuSQ, et al., 2021. Examination of viscosity effect on cavitating flow inside poppet valves based on a numerical study. Applied Sciences, 11(23):11205. ![]() [36]YuanC, ZhuLS, LiuSQ, et al., 2022. Numerical study on the cavitating flow through poppet valves concerning the influence of flow instability on cavitation dynamics. Journal of Mechanical Science and Technology, 36(2):761-773. ![]() [37]ZhangJH, WangD, XuB, et al., 2018. Experimental and numerical investigation of flow forces in a seat valve using a damping sleeve with orifices. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 19(6):417-430. ![]() [38]ZwartPJ, GerberAG, BelamriT, 2004. A two-phase flow model for predicting cavitation dynamics. Proceedings of the 5th International Conference on Multiphase Flow, Article 152. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>