
CLC number:
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2024-01-04
Cited: 0
Clicked: 2586
Citations: Bibtex RefMan EndNote GB/T7714
Jinju GUO, Taoye YIN, Shuai WANG, Wei CHEN, Peiwang ZHU, Kun LUO, Yun KUANG, Jie LIU, Junjun HUANG, Bing HUO, Hui WANG, Chunlin ZHANG, Jian WANG. A novel approach for the optimal arrangement of tube bundles in a 1000-MW condenser[J]. Journal of Zhejiang University Science A,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.A2300183 @article{title="A novel approach for the optimal arrangement of tube bundles in a 1000-MW condenser", %0 Journal Article TY - JOUR
1000MW级凝汽器的壳侧流场的一种新的数值模拟方法机构:1浙江大学,能源清洁利用国家重点实验室,中国杭州,310027;2浙江大学上海高等研究院,中国上海,200120;3中国电力工程顾问集团中南电力设计院有限公司,中国武汉,430071;4黄冈大别山发电有限责任公司,中国黄冈,438300;5中能建数字科技集团有限公司,中国北京,100022 目的:针对大型凝汽器,提出一种新的方法来解决传统多孔介质模型的缺点,优化冷凝器管束布局。 创新点:流场被分为两个区域,即凝结区和非凝结区。在凝结区使用相对较细的网格,并分析蒸汽凝结过程中的热阻,在质量输运方程中加入一个源项来描述蒸汽凝结量。与多孔介质模型相比,这种方法能更好地反映不同管束布置下的流场特征,同时与直接建模相比大大降低计算成本。 方法:1.研究凝汽器壳侧流场的流动和传热规律,将其划分为管束区域和非管束区域。2.在冷凝发生的区域即管束区域,通过物理规律分析与理论计算推导出冷凝的质量源项,并将该质量源项通过用户自定义函数加载于管束区域,构成新的蒸汽冷凝模型。3.以某1000MW级凝汽器为例,使用新的蒸汽冷凝模型模拟壳侧流场,与其设计参数对比并验证该方法的有效性。4.使用该方法,对1000MW级凝汽器两种不同管束布置及三种工况下的壳侧流场进行数值模拟,进一步验证该方法的可行性和必要性。 结论:1.本文提出的数值模拟方法,在模拟流动动力学以及1000MW冷凝器内的冷凝过程方面表现出合理的精度。2.当空气质量分数达到约0.001的临界值时,实现气流中空气层的动平衡;低于该临界值,传热系数从4250 W/(m2·K)至155 W/(m2·K),相当于下降96.35%;高于该临界值的区域称为空气积聚区域。3.在额定漏气条件下,均匀管束布置的压降比非均匀管束布置低51.73%;此外,随着空气浓度的增加,传热效率随着空气泄漏量的增加而降低,导致传热系数降低。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]AhnT, MoonJ, KangJ, et al., 2022. Steam condensation in the presence of non-condensable gas inside a nearly horizontal tube under separated flow. International Journal of Heat and Mass Transfer, 197:123351. ![]() [2]HosseiniR, Hosseini-GhaffarA, SoltaniM, 2007. Experimental determination of shell side heat transfer coefficient and pressure drop for an oil cooler shell-and-tube heat exchanger with three different tube bundles. Applied Thermal Engineering, 27(5-6):1001-1008. ![]() [3]HuangYQ, HuangR, YuXL, et al., 2013. Simulation, experimentation, and collaborative analysis of adjacent heat exchange modules in a vehicular cooling system. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 14(6):417-426. ![]() [4]KasumuAS, NassarNN, MehrotraAK, 2017. A heat-transfer laboratory experiment with shell-and-tube condenser. Education for Chemical Engineers, 19:38-47. ![]() [5]KeshvarparastA, AjarostaghiSSM, DelavarMA, 2020. Thermodynamic analysis the performance of hybrid solar-geothermal power plant equipped with air-cooled condenser. Applied Thermal Engineering, 172:115160. ![]() [6]KumarA, KumarR, DasAK, 2023. Numerical simulation of flow condensation inside smooth and structured tubes. International Journal of Refrigeration, 146:202-213. ![]() [7]LiaoY, CaiQ, HeSP, et al., 2023. Study on three-dimensional numerical simulation of shell and tube heat exchanger of the surface ship under marine conditions. Nuclear Engineering and Technology, 55(4):1233-1243. ![]() [8]LiuL, ShenT, ZhangL, et al., 2020. Experimental and numerical investigation on shell-and-tube exhaust gas recirculation cooler with different tube bundles. Heat and Mass Transfer, 56(2):601-615. ![]() [9]LiuL, ChenWZ, WangC, et al., 2021. CFD analysis of steam condensation with air in the tubes bundle channel under natural convection conditions. Annals of Nuclear Energy, 162:108510. ![]() [10]ParkYG, YoonSY, SeoYM, et al., 2020. A study on the optimal arrangement of tube bundle for the performance enhancement of a steam turbine surface condenser. Applied Thermal Engineering, 166:114681. ![]() [11]PereiraIPS, BagajewiczMJ, CostaALH, 2021. Global optimization of the design of horizontal shell and tube condensers. Chemical Engineering Science, 236:116474. ![]() [12]QinK, ZhangAJ, GuoQ, et al., 2023. Influence of operating conditions on in-tube vapour condensation heat transfer characteristics in the presence of noncondensable gases at high pressure. Applied Thermal Engineering, 226:120243. ![]() [13]SeleznevV, 2007. Numerical simulation of a gas pipeline network using computational fluid dynamics simulators. Journal of Zhejiang University-SCIENCE A, 8(5):755-765. ![]() [14]SteefelCI, MacQuarrieKTB, 1996. Approaches to modeling of reactive transport in porous media. In: Lichtner PC, Steefel CI, Oelkers EH (Eds.), Reactive Transport in Porous Media. Mineralogical Society of America, Washington, USA, p.83-130. ![]() [15]ZhangXB, GanZH, QiuLM, et al., 2008. Computational fluid dynamic simulation of an inter-phasing pulse tube cooler. Journal of Zhejiang University-SCIENCE A, 9(1):93-98. ![]() [16]ZhangXB, ZhangW, ZhangX, 2012. Modeling droplet vaporization and combustion with the volume of fluid method at a small Reynolds number. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 13(5):361-374. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE | ||||||||||||||



ORCID:
Open peer comments: Debate/Discuss/Question/Opinion
<1>