
CLC number:
On-line Access: 2025-01-14
Received: 2023-09-12
Revision Accepted: 2023-12-17
Crosschecked: 2024-10-11
Cited: 0
Clicked: 2500
Citations: Bibtex RefMan EndNote GB/T7714
https://orcid.org/0009-0000-4467-0426
https://orcid.org/0000-0002-6521-6641
Shu Sian HOW, Sheila NATHAN, Su Datt LAM, Sylvia CHIENG. ATP-binding cassette (ABC) transporters: structures and roles in bacterial pathogenesis[J]. Journal of Zhejiang University Science B,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.B2300641 @article{title="ATP-binding cassette (ABC) transporters: structures and roles in bacterial pathogenesis", %0 Journal Article TY - JOUR
ABC转运蛋白的结构及其在细菌致病过程中的作用1马来西亚国立大学生物科学与生物科技系, 马来西亚万宜市, 43600 2马来西亚国立大学应用物理系, 马来西亚万宜市, 43600 摘要:腺苷三磷酸结合盒转运蛋白(ATP-binding cassette transporter proteins,ABC转运蛋白)具有向外和向内两种转运方式,能通过克服浓度梯度协助多种底物分子在磷脂双分子层中运输。这些转运蛋白具有两个高度保守的核苷酸结合区域(NBDs)和两个跨膜结构域(TMDs)。与ABC向外转运蛋白不同,原核生物的ABC向内转运蛋白还需额外的底物结合蛋白(SBP)作为特定底物转运的识别位点。大量研究发现在细菌致病体中存在许多ABC转运蛋白,提示这些转运蛋白对细菌感染的建立至关重要。现有研究证实,ABC转运蛋白在细菌生长、致病和毒力方面发挥作用,包括导入细胞活动所需的必要营养物质,以及输出与外膜相关的毒力因子和抗微生物物质等。本文对ABC转运蛋白的经典结构和最新分类进行综述,以便全面了解与细菌毒力和致病性相关的ABC转运蛋白在细菌感染期间的活动与作用。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]AbrilAG, Quintela-BalujaM, VillaTG, et al., 2022. Proteomic characterization of virulence factors and related proteins in Enterococcus strains from dairy and fermented food products. Int J Mol Sci, 23(18):10971. ![]() [2]AkhtarAA, TurnerDPJ, 2022. The role of bacterial ATP-binding cassette (ABC) transporters in pathogenesis and virulence: therapeutic and vaccine potential. Microb Pathog, 171:105734. ![]() [3]AlavI, SuttonJM, RahmanKM, 2018. Role of bacterial efflux pumps in biofilm formation. J Antimicrob Chemother, 73(8):2003-2020. ![]() [4]Alcalde-RicoM, Hernando-AmadoS, BlancoP, et al., 2016. Multidrug efflux pumps at the crossroad between antibiotic resistance and bacterial virulence. Front Microbiol, 7:1483. ![]() [5]AllanRN, SkippP, JefferiesJ, et al., 2014. Pronounced metabolic changes in adaptation to biofilm growth by Streptococcus pneumoniae. PLoS ONE, 9(9):e107015. ![]() [6]AllisonDG, 2003. The biofilm matrix. Biofouling, 19(2):139-150. ![]() [7]AlteriCJ, MobleyHLT, 2012. Escherichia coli physiology and metabolism dictates adaptation to diverse host microenvironments. Curr Opin Microbiol, 15(1):3-9. ![]() [8]AmblarM, ZaballosÁ, de la CampaAG, 2022. Role of PatAB transporter in efflux of levofloxacin in Streptococcus pneumoniae. Antibiotics, 11(12):1837. ![]() [9]AnteloGT, VilaAJ, GiedrocDP, et al., 2021. Molecular evolution of transition metal bioavailability at the host-pathogen interface. Trends Microbiol, 29(5):441-457. ![]() [10]BaylayAJ, PiddockLJV, 2015. Clinically relevant fluoroquinolone resistance due to constitutive overexpression of the PatAB ABC transporter in Streptococcus pneumoniae is conferred by disruption of a transcriptional attenuator. J Antimicrob Chemother, 70(3):670-679. ![]() [11]BeceiroA, TomásM, BouG, 2013. Antimicrobial resistance and virulence: a successful or deleterious association in the bacterial world?Clin Microbiol Rev, 26(2):185-230. ![]() [12]BeggSL, 2019. The role of metal ions in the virulence and viability of bacterial pathogens. Biochem Soc Trans, 47(1):77-87. ![]() [13]BeisK, 2015. Structural basis for the mechanism of ABC transporters. Biochem Soc Trans, 43(5):889-893. ![]() [14]BerntssonRPA, SmitsSHJ, SchmittL, et al., 2010. A structural classification of substrate-binding proteins. FEBS Lett, 584(12):2606-2617. ![]() [15]BiYC, MannE, WhitfieldC, et al., 2018. Architecture of a channel-forming O-antigen polysaccharide ABC transporter. Nature, 553(7688):361-365. ![]() [16]BilsingFL, AnlaufMT, HachaniE, et al., 2023. ABC transporters in bacterial nanomachineries. Int J Mol Sci, 24(7):6227. ![]() [17]BiondoC, 2023. Bacterial antibiotic resistance: the most critical pathogens. Pathogens, 12(1):116. ![]() [18]BoëlG, OrelleC, JaultJM, et al., 2019. ABC systems: structural and functional variations on a common theme. Res Microbiol, 170(8):301-303. ![]() [19]BogomolnayaLM, AndrewsKD, TalamantesM, et al., 2013. The ABC-type efflux pump MacAB protects Salmonella enterica serovar Typhimurium from oxidative stress. mBio, 4(6):e00630-13. ![]() [20]CasadevallA, PirofskiLA, 2000. Host-pathogen interactions: basic concepts of microbial commensalism, colonization, infection, and disease. Infect Immun, 68(12):6511-6518. ![]() [21]ChenL, HouWT, FanT, et al., 2020. Cryo-electron microscopy structure and transport mechanism of a wall teichoic acid ABC transporter. mBio, 11(2):e02749-19. ![]() [22]ChoiCC, FordRC, 2021. ATP binding cassette importers in eukaryotic organisms. Biol Rev, 96(4):1318-1330. ![]() [23]CrowA, GreeneNP, KaplanE, et al., 2017. Structure and mechanotransmission mechanism of the MacB ABC transporter superfamily. Proc Natl Acad Sci USA, 114(47):12572-12577. ![]() [24]CuiLQ, WangXR, HuangDY, et al., 2020. CRISPR-cas3 of Salmonella upregulates bacterial biofilm formation and virulence to host cells by targeting quorum-sensing systems. Pathogens, 9:53. ![]() [25]CuthbertsonL, KosV, WhitfieldC, 2010. ABC transporters involved in export of cell surface glycoconjugates. Microbiol Mol Biol Rev, 74(3):341-362. ![]() [26]DavidsonAL, ChenJ, 2004. ATP-binding cassette transporters in bacteria. Annu Rev Biochem, 73:241-268. ![]() [27]DavidsonAL, DassaE, OrelleC, et al., 2008. Structure, function, and evolution of bacterial ATP-binding cassette systems. Microbiol Mol Biol Rev, 72(2):317-364. ![]() [28]DawsonRJP, LocherKP, 2007. Structure of the multidrug ABC transporter Sav1866 from Staphylococcus aureus in complex with AMP-PNP. FEBS Lett, 581(5):935-938. ![]() [29]de BoerM, GouridisG, VietrovR, et al., 2019. Conformational and dynamic plasticity in substrate-binding proteins underlies selective transport in ABC importers. eLife, 8:e44652. ![]() [30]de la Torre LI, Vergara MezaJG, CabarcaS, et al., 2021. Comparison of carbohydrate ABC importers from Mycobacterium tuberculosis. BMC Genomics, 22:841. ![]() [31]DelepelaireP, 2019. Bacterial ABC transporters of iron containing compounds. Res Microbiol, 170(8):345-357. ![]() [32]DelmarJA, SuCC, YuEW, 2014. Bacterial multidrug efflux transporters. Annu Rev Biophys, 43:93-117. ![]() [33]DoerrlerWT, ReedyMC, RaetzCRH, 2001. An Escherichia coli mutant defective in lipid export. J Biol Chem, 276(15):11461-11464. ![]() [34]DongHH, ZhangZY, TangXD, et al., 2017. Structural and functional insights into the lipopolysaccharide ABC transporter LptB2FG. Nat Commun, 8:222. ![]() [35]DuXJ, WangF, LuXN, et al., 2012. Biochemical and genetic characteristics of Cronobacter sakazakii biofilm formation. Res Microbiol, 163(6-7):448-456. ![]() [36]EitingerT, RodionovDA, GroteM, et al., 2011. Canonical and ECF-type ATP-binding cassette importers in prokaryotes: diversity in modular organization and cellular functions. FEMS Microbiol Rev, 35(1):3-67. ![]() [37]el GarchF, LismondA, PiddockLJV, et al., 2010. Fluoroquinolones induce the expression of patA and patB, which encode ABC efflux pumps in Streptococcus pneumoniae. J Antimicrob Chemother, 65(10):2076-2082. ![]() [38]FahmyA, SrinivasanA, WebberMA, 2016. The relationship between bacterial multidrug efflux pumps and biofilm formation. In: Li XZ, Elkins CA, Zgurskaya HI (Eds.), Efflux-Mediated Antimicrobial Resistance in Bacteria. Adis, Cham, p.651-663. ![]() [39]FanCC, KaiserJT, ReesDC, 2020. A structural framework for unidirectional transport by a bacterial ABC exporter. Proc Natl Acad Sci USA, 117(32):19228-19236. ![]() [40]FiorentinoF, BollaJR, MehmoodS, et al., 2019. The different effects of substrates and nucleotides on the complex formation of ABC transporters. Structure, 27(4):651-659.e3. ![]() [41]FordRC, BeisK, 2019. Learning the ABCs one at a time: structure and mechanism of ABC transporters. Biochem Soc Trans, 47(1):23-36. ![]() [42]FordRC, HellmichUA, 2020. What monomeric nucleotide binding domains can teach us about dimeric ABC proteins. FEBS Lett, 594(23):3857-3875. ![]() [43]FrançaA, GaioV, LopesN, et al., 2021. Virulence factors in coagulase-negative staphylococci. Pathogens, 10(2):170. ![]() [44]FuTW, FanXY, LongQX, et al., 2017. Comparative analysis of prophages in Streptococcus mutans genomes. PeerJ, 5:e4057. ![]() [45]FulyaniF, Schuurman-WoltersGK, ŽagarAV, et al., 2013. Functional diversity of tandem substrate-binding domains in ABC transporters from pathogenic bacteria. Structure, 21(10):1879-1888. ![]() [46]GaoL, MaYY, LiXT, et al., 2020. Research on the roles of genes coding ATP‐binding cassette transporters in Porphyromonas gingivalis pathogenicity. J Cell Biochem, 121(1):93-102. ![]() [47]GhaneiH, AbeyrathnePD, LamJS, 2007. Biochemical characterization of MsbA from Pseudomonas aeruginosa. J Biol Chem, 282(37):26939-26947. ![]() [48]GiulianiSE, FrankAM, CorglianoDM, et al., 2011. Environment sensing and response mediated by ABC transporters. BMC Genomics, 12(S1):S8. ![]() [49]GomesAC, MoreiraAC, MesquitaG, et al., 2018. Modulation of iron metabolism in response to infection: twists for all tastes. Pharmaceuticals, 11(3):84. ![]() [50]GuffickC, HsiehPY, AliA, et al., 2022. Drug‐dependent inhibition of nucleotide hydrolysis in the heterodimeric ABC multidrug transporter PatAB from Streptococcus pneumoniae. FEBS J, 289(13):3770-3788. ![]() [51]GuptaP, SarkarS, DasB, et al., 2016. Biofilm, pathogenesis and prevention—a journey to break the wall: a review. Arch Microbiol, 198(1):1-15. ![]() [52]Hernando-AmadoS, BlancoP, Alcalde-RicoM, et al., 2016. Multidrug efflux pumps as main players in intrinsic and acquired resistance to antimicrobials. Drug Resist Updates, 28:13-27. ![]() [53]HicksG, JiaZC, 2018. Structural basis for the lipopolysaccharide export activity of the bacterial lipopolysaccharide transport system. Int J Mol Sci, 19(9):2680. ![]() [54]HigginsCF, LintonKJ, 2004. The ATP switch model for ABC transporters. Nat Struct Mol Biol, 11(10):918-926. ![]() [55]HollandIB, 2019. Rise and rise of the ABC transporter families. Res Microbiol, 170(8):304-320. ![]() [56]HonsaES, JohnsonMDL, RoschJW, 2013. The roles of transition metals in the physiology and pathogenesis of Streptococcus pneumoniae. Front Cell Infect Microbiol, 3:92. ![]() [57]HuangLL, WuCR, GaoHJ, et al., 2022. Bacterial multidrug efflux pumps at the frontline of antimicrobial resistance: an overview. Antibiotics, 11(4):520. ![]() [58]IlariA, PescatoriL, di SantoR, et al, 2016. Salmonella enterica serovar Typhimurium growth is inhibited by the concomitant binding of Zn(II) and a pyrrolyl-hydroxamate to ZnuA, the soluble component of the ZnuABC transporter. Biochim Biophys Acta (BBA) Gen Subj, 1860(3):534-541. ![]() [59]ImmadisettyK, HettigeJ, MoradiM, 2019. Lipid-dependent alternating access mechanism of a bacterial multidrug ABC exporter. ACS Cent Sci, 5(1):43-56. ![]() [60]IzoréT, Contreras-MartelC, el MortajiL, et al., 2010. Structural basis of host cell recognition by the pilus adhesin from Streptococcus pneumoniae. Structure, 18(1):106-115. ![]() [61]JeckelmannJM, ErniB, 2020. Transporters of glucose and other carbohydrates in bacteria. Pflügers Arch Eur J Physiol, 472(9):1129-1153. ![]() [62]JenulC, HorswillAR, 2019. Regulation of Staphylococcus aureus virulence. In: Fischetti VA, Novick RP, Ferretti JJ, et al. (Eds.), Gram-Positive Pathogens, 3rd Ed. American Society for Microbiology, Washington, p.669-686. ![]() [63]JiangRJ, XiangMY, ChenWT, et al., 2021. Biofilm characteristics and transcriptomic analysis of Haemophilus parasuis. Vet Microbiol, 258:109073. ![]() [64]KadabaNS, KaiserJT, JohnsonE, et al., 2008. The high-affinity E. coli methionine ABC transporter: structure and allosteric regulation. Science, 321(5886):250-253. ![]() [65]KalitaA, HuJ, TorresAG, 2014. Recent advances in adherence and invasion of pathogenic Escherichia coli. Curr Opin Infect Dis, 27(5):459-464. ![]() [66]KanonenbergK, SpitzO, ErenburgIN, et al., 2018. Type I secretion system—it takes three and a substrate. FEMS Microbiol Lett, 365(11):fny094. ![]() [67]KhanF, PhamDTN, TabassumN, et al., 2020. Treatment strategies targeting persister cell formation in bacterial pathogens. Crit Rev Microbiol, 46(6):665-688. ![]() [68]KleinRD, HultgrenSJ, 2020. Urinary tract infections: microbial pathogenesis, host‒pathogen interactions and new treatment strategies. Nat Rev Microbiol, 18(4):211-226. ![]() [69]KolichLR, ChangYT, CoudrayN, et al., 2020. Structure of MlaFB uncovers novel mechanisms of ABC transporter regulation. eLife, 9:e60030. ![]() [70]KonishiH, HioM, KobayashiM, et al., 2020. Bacterial chemotaxis towards polysaccharide pectin by pectin-binding protein. Sci Rep, 10:3977. ![]() [71]LeeM, KimHL, SongS, et al., 2013. The α-barrel tip region of Escherichia coli TolC homologs of Vibrio vulnificus interacts with the MacA protein to form the functional macrolide-specific efflux pump MacAB-TolC. J Microbiol, 51(2):154-159. ![]() [72]LeeY, SongS, ShengLL, et al., 2018. Substrate binding protein DppA1 of ABC transporter DppBCDF increases biofilm formation in Pseudomonas aeruginosa by inhibiting Pf5 prophage lysis. Front Microbiol, 9:30. ![]() [73]LeisicoF, GodinhoLM, GonçalvesIC, et al., 2020. Multitask ATPases (NBDs) of bacterial ABC importers type I and their interspecies exchangeability. Sci Rep, 10:19564. ![]() [74]LewinsonO, Livnat-LevanonN, 2017. Mechanism of action of ABC importers: conservation, divergence, and physiological adaptations. J Mol Biol, 429(5):606-619. ![]() [75]LewinsonO, OrelleC, SeegerMA, 2020. Structures of ABC transporters: handle with care. FEBS Lett, 594(23):3799-3814. ![]() [76]LewisVG, WeenMP, McDevittCA, 2012. The role of ATP-binding cassette transporters in bacterial pathogenicity. Protoplasma, 249(4):919-942. ![]() [77]LiJ, LiuDH, DingT, 2021. Transcriptomic analysis reveal differential gene expressions of Escherichia coli O157:H7 under ultrasonic stress. Ultrason Sonochem, 71:105418. ![]() [78]LiYY, OrlandoBJ, LiaoMF, 2019. Structural basis of lipopolysaccharide extraction by the LptB2FGC complex. Nature, 567(7749):486-490. ![]() [79]LinMF, LinYY, TuCC, et al., 2017. Distribution of different efflux pump genes in clinical isolates of multidrug-resistant Acinetobacter baumannii and their correlation with antimicrobial resistance. J Microbiol Immunol Infect, 50(2):224-231. ![]() [80]LiuB, ZhengDD, ZhouSY, et al., 2022. VFDB 2022: a general classification scheme for bacterial virulence factors. Nucleic Acids Res, 50(D1):D912-D917. ![]() [81]LiuWJ, HuangLX, SuYQ, et al., 2017. Contributions of the oligopeptide permeases in multistep of Vibrio alginolyticus pathogenesis. MicrobiologyOpen, 6(5):e00511. ![]() [82]LocherKP, 2016. Mechanistic diversity in ATP-binding cassette (ABC) transporters. Nat Struct Mol Biol, 23(6):487-493. ![]() [83]LocherKP, BorthsE, 2004. ABC transporter architecture and mechanism: implications from the crystal structures of BtuCD and BtuF. FEBS Lett, 564(3):264-268. ![]() [84]LowDE, 2004. Quinolone resistance among pneumococci: therapeutic and diagnostic implications. Clin Infect Dis, 38(S4):S357-S362. ![]() [85]LuoQS, YangX, YuS, et al., 2017. Structural basis for lipopolysaccharide extraction by ABC transporter LptB2FG. Nat Struct Mol Biol, 24(5):469-474. ![]() [86]MaqboolA, HorlerRSP, MullerA, et al., 2015. The substrate-binding protein in bacterial ABC transporters: dissecting roles in the evolution of substrate specificity. Biochem Soc Trans, 43(5):1011-1017. ![]() [87]MiW, LiYY, YoonSH, et al., 2017. Structural basis of MsbA-mediated lipopolysaccharide transport. Nature, 549(7671):233-237. ![]() [88]MiryalaSK, RamaiahS, 2019. Exploring the multi-drug resistance in Escherichia coli O157:H7 by gene interaction network: a systems biology approach. Genomics, 111(4):958-965. ![]() [89]MitraA, KoYH, CingolaniG, et al., 2019. Heme and hemoglobin utilization by Mycobacterium tuberculosis. Nat Commun, 10:4260. ![]() [90]MurdochCC, SkaarEP, 2022. Nutritional immunity: the battle for nutrient metals at the host‒pathogen interface. Nat Rev Microbiol, 20(11):657-670. ![]() [91]MurphyTF, BrauerAL, JohnsonA, et al., 2016. ATP-binding cassette (ABC) transporters of the human respiratory tract pathogen, Moraxella catarrhalis: role in virulence. PLoS ONE, 11(7):e0158689. ![]() [92]NaoeY, NakamuraN, DoiA, et al., 2016. Crystal structure of bacterial haem importer complex in the inward-facing conformation. Nat Commun, 7:13411. ![]() [93]NevilleSL, SjöhamnJ, WattsJA, et al., 2021. The structural basis of bacterial manganese import. Sci Adv, 7(32):eabg3980. ![]() [94]OhashiH, HasegawaM, WakimotoK, et al., 2015. Next-generation technologies for multiomics approaches including interactome sequencing. Biomed Res Int, 2015:104209. ![]() [95]OldhamML, ChenSS, ChenJ, 2013. Structural basis for substrate specificity in the Escherichia coli maltose transport system. Proc Natl Acad Sci USA, 110(45):18132-18137. ![]() [96]OwensTW, TaylorRJ, PahilKS, et al., 2019. Structural basis of unidirectional export of lipopolysaccharide to the cell surface. Nature, 567(7749):550-553. ![]() [97]PaciV, KrastevaI, OrsiniM, et al., 2020. Proteomic analysis of Brucella melitensis and Brucella ovis for identification of virulence factor using bioinformatics approachs. Mol Cell Probes, 53:101581. ![]() [98]PaludanSR, PradeuT, MastersSL, et al., 2021. Constitutive immune mechanisms: mediators of host defence and immune regulation. Nat Rev Immunol, 21(3):137-150. ![]() [99]PatelS, MathivananN, GoyalA, 2017. Bacterial adhesins, the pathogenic weapons to trick host defense arsenal. Biomed Pharmacother, 93:763-771. ![]() [100]PierGB, 2007. Pseudomonas aeruginosa lipopolysaccharide: a major virulence factor, initiator of inflammation and target for effective immunity. Int J Med Microbiol, 297(5):277-295. ![]() [101]PierceyMJ, HingstonPA, Truelstrup HansenL, 2016. Genes involved in Listeria monocytogenes biofilm formation at a simulated food processing plant temperature of 15 °C. Int J Food Microbiol, 223:63-74. ![]() [102]PietrocolaG, CampocciaD, MottaC, et al., 2022. Colonization and infection of indwelling medical devices by Staphylococcus aureus with an emphasis on orthopedic implants. Int J Mol Sci, 23(11):5958. ![]() [103]RahmanA, AmirkhaniA, ChowdhuryD, et al., 2022. Proteome of Staphylococcus aureus biofilm changes significantly with aging. Int J Mol Sci, 23(12):6415. ![]() [104]RempelS, StanekWK, SlotboomDJ, 2019. ECF-type ATP-binding cassette transporters. Annu Rev Biochem, 88:551-576. ![]() [105]RibetD, CossartP, 2015. How bacterial pathogens colonize their hosts and invade deeper tissues. Microbes Infect, 17(3):173-183. ![]() [106]RiceAJ, AlvarezFJD, SchultzKM, et al., 2013. EPR spectroscopy of MolB2C2-A reveals mechanism of transport for a bacterial type II molybdate importer. J Biol Chem, 288(29):21228-21235. ![]() [107]RiceAJ, ParkA, PinkettHW, 2014. Diversity in ABC transporters: type I, II and III importers. Crit Rev Biochem Mol Biol, 49(5):426-437. ![]() [108]Rodríguez-ArceI, Al-JubairT, EubaB, et al., 2019. Moonlighting of Haemophilus influenzae heme acquisition systems contributes to the host airway-pathogen interplay in a coordinated manner. Virulence, 10(1):315-333. ![]() [109]RosaLT, BianconiME, ThomasGH, et al., 2018. Tripartite ATP-independent periplasmic (TRAP) transporters and tripartite tricarboxylate transporters (TTT): from uptake to pathogenicity. Front Cell Infect Microbiol, 8:33. ![]() [110]SansonettiPJ, 1993. Bacterial pathogens, from adherence to invasion: comparative strategies. Med Microbiol Immunol, 182(5):223-232. ![]() [111]SarowskaJ, Futoma-KolochB, Jama-KmiecikA, et al., 2019. Virulence factors, prevalence and potential transmission of extraintestinal pathogenic Escherichia coli isolated from different sources: recent reports. Gut Pathog, 11:10. ![]() [112]SheldonJR, HeinrichsDE, 2012. The iron-regulated staphylococcal lipoproteins. Front Cell Infect Microbiol, 2:41. ![]() [113]ShirshikovaTV, Sierra-BakhshiCG, KamaletdinovaLK, et al., 2021. The ABC-type efflux pump MacAB is involved in protection of Serratia marcescens against aminoglycoside antibiotics, polymyxins, and oxidative stress. mSphere, 6(2):e00033-21. ![]() [114]SongS, WoodTK, 2021. The primary physiological roles of autoinducer 2 in Escherichia coli are chemotaxis and biofilm formation. Microorganisms, 9(2):386. ![]() [115]SongYL, ZhangXL, CaiMH, et al., 2018. The heme transporter HtsABC of group A Streptococcus contributes to virulence and innate immune evasion in murine skin infections. Front Microbiol, 9:1105. ![]() [116]SoniDK, DubeySK, BhatnagarR, 2020. ATP-binding cassette (ABC) import systems of Mycobacterium tuberculosis: target for drug and vaccine development. Emerging Microbes Infect, 9(1):207-220. ![]() [117]SrikantS, 2020. Evolutionary history of ATP-binding cassette proteins. FEBS Lett, 594(23):3882-3897. ![]() [118]SwierLJYM, SlotboomDJ, PoolmanB, 2016. ABC importers. In: George AM (Ed.), ABC Transporters—40 Years on. Springer, Cham, p.3-36. ![]() [119]SwobodaJG, CampbellJ, MeredithTC, et al., 2010. Wall teichoic acid function, biosynthesis, and inhibition. ChemBioChem, 11(1):35-45. ![]() [120]TanakaKJ, SongS, MasonK, PinkettHW, 2018. Selective substrate uptake: the role of ATP-binding cassette (ABC) importers in pathogenesis. Biochimt Biophys Acta (BBA) Biomembr, 1860(4):868-877. ![]() [121]ThélotF, OrlandoBJ, LiYY, et al., 2020. High-resolution views of lipopolysaccharide translocation driven by ABC transporters MsbA and LptB2FGC. Curr Opin Struct Biol, 63:26-33. ![]() [122]ThomasC, TampéR, 2018. Multifaceted structures and mechanisms of ABC transport systems in health and disease. Curr Opin Struct Biol, 51:116-128. ![]() [123]ThomasC, TampéR, 2020. Structural and mechanistic principles of ABC transporters. Annu Rev Biochem, 89:605-636. ![]() [124]ThomasC, AllerSG, BeisK, et al., 2020. Structural and functional diversity calls for a new classification of ABC transporters. FEBS Lett, 594(23):3767-3775. ![]() [125]TurlinE, HeuckG, SimõesBrandão MI, et al., 2014. Protoporphyrin (PPIX) efflux by the MacAB-TolC pump in Escherichia coli. MicrobiologyOpen, 3(6):849-859. ![]() [126]van VeenHW, 2016. Bacterial ABC multidrug exporters: from shared proteins motifs and features to diversity in molecular mechanisms. In: George AM (Ed.), ABC Transporters—40 Years on. Springer, Cham, p.37-51. ![]() [127]VarelaMF, KumarS, 2019. Strategies for discovery of new molecular targets for anti-infective drugs. Curr Opin Pharmacol, 48:57-68. ![]() [128]VestbyLK, GrønsethT, SimmR, et al., 2020. Bacterial biofilm and its role in the pathogenesis of disease. Antibiotics, 9(2):59. ![]() [129]VijayababuP, SamykannuG, AntonyrajCB, et al., 2018. Patulin interference with ATP binding cassette transferring auto inducer-2 in Salmonella typhi and biofilm inhibition via quorum sensing. Inf Med Unlocked, 11:9-14. ![]() [130]VilletRA, Truong-BolducQC, WangY, et al., 2014. Regulation of expression of abcA and its response to environmental conditions. J Bacteriol, 196(8):1532-1539. ![]() [131]WangQY, WangPF, LiuPP, et al., 2022. Comparative transcriptome analysis reveals regulatory factors involved in Vibrio parahaemolyticus biofilm formation. Front Cell Infect Microbiol, 12:917131. ![]() [132]WangTL, FuGB, PanXJ, et al., 2013. Structure of a bacterial energy-coupling factor transporter. Nature, 497(7448):272-276. ![]() [133]WooJS, ZeltinaA, GoetzBA, et al., 2012. X-ray structure of the Yersinia pestis heme transporter HmuUV. Nat Struct Mol Biol, 19(12):1310-1315. ![]() [134]WoodDW, SetubalJC, KaulR, et al., 2001. The genome of the natural genetic engineer Agrobacterium tumefaciens C58. Science, 294(5550):2317-2323. ![]() [135]XuK, ZhangMH, ZhaoQ, et al., 2013. Crystal structure of a folate energy-coupling factor transporter from Lactobacillus brevis. Nature, 497(7448):268-271. ![]() [136]YamagishiA, NakanoS, YamasakiS, et al., 2020. An efflux inhibitor of the MacAB pump in Salmonella enterica serovar Typhimurium. Microbiol Immunol, 64(3):182-188. ![]() [137]YamanakaH, KobayashiH, TakahashiE, et al., 2008. MacAB is involved in the secretion of Escherichia coli heat-stable enterotoxin II. J Bacteriol, 190(23):7693-7698. ![]() [138]YangJL, HeYP, JiangJ, et al., 2016. Comparative proteomic analysis by iTRAQ-2DLC-MS/MS provides insight into the key proteins involved in Cronobacter sp. biofilm formation. Food Control, 63:93-100. ![]() [139]YangXY, LiN, XuJY, et al., 2019. Lipoprotein SPD_1609 of Streptococcus pneumoniae promotes adherence and invasion to epithelial cells contributing to bacterial virulence. Front Microbiol, 10:1769. ![]() [140]YoshikaiH, KizakiH, SaitoY, et al., 2016. Multidrug-resistance transporter AbcA secretes Staphylococcus aureus cytolytic toxins. J Infect Dis, 213(2):295-304. ![]() [141]ZaynabM, ChenHR, ChenYF, et al., 2021. Signs of biofilm formation in the genome of Labrenzia sp. PO1. Saudi J Biol Sci, 28(3):1900-1912. ![]() [142]ZhengJX, LinZW, SunX, et al., 2018. Overexpression of OqxAB and MacAB efflux pumps contributes to eravacycline resistance and heteroresistance in clinical isolates of Klebsiella pneumoniae. Emerg Microbes Infect, 7(1):1-11. ![]() [143]ZhouZ, SunN, WuSS, et al., 2016. Genomic data mining reveals a rich repertoire of transport proteins in Streptomyces. BMC Genomics, 17(S7):510. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE | ||||||||||||||


ORCID:
Open peer comments: Debate/Discuss/Question/Opinion
<1>