CLC number:
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2021-10-26
Cited: 0
Clicked: 1060
Masoud Sarraf, Erfan Rezvani Ghomi, Saeid Alipour, Seeram Ramakrishna & Nazatul Liana Sukiman . A state-of-the-art review of the fabrication and characteristics of titanium and its alloys for biomedical applications[J]. Journal of Zhejiang University Science D, 2022, 5(2): 371-395.
@article{title="A state-of-the-art review of the fabrication and characteristics of titanium and its alloys for biomedical applications",
author="Masoud Sarraf, Erfan Rezvani Ghomi, Saeid Alipour, Seeram Ramakrishna & Nazatul Liana Sukiman ",
journal="Journal of Zhejiang University Science D",
volume="5",
number="2",
pages="371-395",
year="2022",
publisher="Zhejiang University Press & Springer",
doi="10.1007/s42242-021-00170-3"
}
%0 Journal Article
%T A state-of-the-art review of the fabrication and characteristics of titanium and its alloys for biomedical applications
%A Masoud Sarraf
%A Erfan Rezvani Ghomi
%A Saeid Alipour
%A Seeram Ramakrishna & Nazatul Liana Sukiman
%J Journal of Zhejiang University SCIENCE D
%V 5
%N 2
%P 371-395
%@ 1869-1951
%D 2022
%I Zhejiang University Press & Springer
%DOI 10.1007/s42242-021-00170-3
TY - JOUR
T1 - A state-of-the-art review of the fabrication and characteristics of titanium and its alloys for biomedical applications
A1 - Masoud Sarraf
A1 - Erfan Rezvani Ghomi
A1 - Saeid Alipour
A1 - Seeram Ramakrishna & Nazatul Liana Sukiman
J0 - Journal of Zhejiang University Science D
VL - 5
IS - 2
SP - 371
EP - 395
%@ 1869-1951
Y1 - 2022
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1007/s42242-021-00170-3
Abstract: Commercially pure titanium and titanium alloys have been among the most commonly used materials for biomedical applications since the 1950s. Due to the excellent mechanical tribological properties, corrosion resistance, biocompatibility, and antibacterial properties of titanium, it is getting much attention as a biomaterial for implants. Furthermore, titanium promotes osseointegration without any additional adhesives by physically bonding with the living bone at the implant site. These properties are crucial for producing high-strength metallic alloys for biomedical applications. Titanium alloys are manufactured into the three types of α, β, and α + β. The scientific and clinical understanding of titanium and its potential applications, especially in the biomedical field, are still in the early stages. This review aims to establish a credible platform for the current and future roles of titanium in biomedicine. We first explore the developmental history of titanium. Then, we review the recent advancement of the utility of titanium in diverse biomedical areas, its functional properties, mechanisms of biocompatibility, host tissue responses, and various relevant antimicrobial strategies. Future research will be directed toward advanced manufacturing technologies, such as powder-based additive manufacturing, electron beam melting and laser melting deposition, as well as analyzing the effects of alloying elements on the biocompatibility, corrosion resistance, and mechanical properties of titanium. Moreover, the role of titania nanotubes in regenerative medicine and nanomedicine applications, such as localized drug delivery system, immunomodulatory agents, antibacterial agents, and hemocompatibility, is investigated, and the paper concludes with the future outlook of titanium alloys as biomaterials.
Open peer comments: Debate/Discuss/Question/Opinion
<1>