Full Text:   <2669>

Summary:  <1637>

CLC number: R783.1

On-line Access: 2017-07-05

Received: 2016-12-08

Revision Accepted: 2017-03-22

Crosschecked: 2017-06-16

Cited: 0

Clicked: 4395

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Xiao-ting Shen

http://orcid.org/0000-0002-3956-6955

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2017 Vol.18 No.7 P.615-625

http://doi.org/10.1631/jzus.B1600555


Effects on cytotoxicity and antibacterial properties of the incorporations of silver nanoparticles into the surface coating of dental alloys


Author(s):  Xiao-ting Shen, Yan-zhen Zhang, Fang Xiao, Jing Zhu, Xiao-dong Zheng

Affiliation(s):  Stomatology Hospital Affiliated to Zhejiang University of Medicine, Hangzhou 310006, China; more

Corresponding email(s):   zyz85@hotmail.com, zhujing0721@163.com

Key Words:  Silver nanoparticles (AgNPs), Dental casting, Cytotoxicity, Antibacterial, MC3T3-E1, BMSC


Xiao-ting Shen, Yan-zhen Zhang, Fang Xiao, Jing Zhu, Xiao-dong Zheng. Effects on cytotoxicity and antibacterial properties of the incorporations of silver nanoparticles into the surface coating of dental alloys[J]. Journal of Zhejiang University Science B, 2017, 18(7): 615-625.

@article{title="Effects on cytotoxicity and antibacterial properties of the incorporations of silver nanoparticles into the surface coating of dental alloys",
author="Xiao-ting Shen, Yan-zhen Zhang, Fang Xiao, Jing Zhu, Xiao-dong Zheng",
journal="Journal of Zhejiang University Science B",
volume="18",
number="7",
pages="615-625",
year="2017",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1600555"
}

%0 Journal Article
%T Effects on cytotoxicity and antibacterial properties of the incorporations of silver nanoparticles into the surface coating of dental alloys
%A Xiao-ting Shen
%A Yan-zhen Zhang
%A Fang Xiao
%A Jing Zhu
%A Xiao-dong Zheng
%J Journal of Zhejiang University SCIENCE B
%V 18
%N 7
%P 615-625
%@ 1673-1581
%D 2017
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1600555

TY - JOUR
T1 - Effects on cytotoxicity and antibacterial properties of the incorporations of silver nanoparticles into the surface coating of dental alloys
A1 - Xiao-ting Shen
A1 - Yan-zhen Zhang
A1 - Fang Xiao
A1 - Jing Zhu
A1 - Xiao-dong Zheng
J0 - Journal of Zhejiang University Science B
VL - 18
IS - 7
SP - 615
EP - 625
%@ 1673-1581
Y1 - 2017
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1600555


Abstract: 
The aim of this study was to research the changes in cytotoxicity and antibacterial properties after silver nanoparticles (AgNPs) were incorporated into the surface coating of dental alloys. AgNPs were attached to cobalt chromium alloys and pure titanium using a hydrothermal method, according to the reaction: AgNO3+NaBH4→ Ag+1/2H2+1/2B2H6+NaNO3. A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay was used to evaluate the cytotoxicity of the alloys when in contact with osteogenic precursor cells (MC3T3-E1) from mice and mesenchymal stem cells (BMSC) from rats. The antibacterial properties of dental alloys incorporating three different concentrations (10, 4, and 2 μmol/L) of AgNPs were tested on Staphylococcus aureus (SA) and Streptococcus mutans (MS). High cytotoxicity values were observed for all dental alloys that contained 0% of AgNPs (the control groups). The incorporation of AgNPs reduced cytotoxicity values. No significant difference was observed for antibacterial performance when comparing dental alloys containing AgNPs to the respective control groups. The results demonstrated that the cobalt chromium alloys and pure titanium all had cytotoxicity to MC3T3-E1 and BMSC and that the incorporation of AgNPs could reduce this cytotoxicity. The concentrations of AgNPs adopted in this study were found to have no antibacterial action against SA or MS.

纳米银颗粒粘附对牙科合金细胞毒性和抗菌性的影响

目的:评估纳米银颗粒的粘附对牙科合金的细胞毒性和抗菌性的影响,并初步探讨其作用机制。
创新点:运用MTT法证实钴铬合金和纯钛对小鼠成骨前体细胞(MC3T3-E1)及大鼠骨髓间充质干细胞(BMSC)产生细胞毒性,粘附纳米银颗粒后细胞毒性有所降低。
方法:将化学法制得的3种浓度的纳米银颗粒分别粘附于6种牙科合金表面,扫描电镜观察并确认纳米银的粘附情况。采用MTT法检测不同浓度纳米银颗粒的牙科合金对MC3T3-E1及BMSC的细胞毒性。评价3种浓度纳米银颗粒的钴铬合金和纯钛试件浸提液对金黄色葡萄球菌和变形链球菌的抗菌性。
结论:牙科合金对MC3T3-E1和BMSC细胞具有较强的毒性,粘附纳米银颗粒后细胞毒性有所降低。3种浓度的纳米银颗粒细胞毒性之间无显著性差异,且这3种浓度纳米银颗粒粘附后对牙科合金的抗菌性无明显影响。

关键词:纳米银颗粒;牙科合金;细胞毒性;抗菌性能;MC3T3-E1细胞;BMSC细胞

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Acosta-Torres, L.S., Mendieta, I., Nuñez-Anita, R.E., et al., 2012. Cytocompatible antifungal acrylic resin containing silver nanoparticles for dentures. Int. J. Nanomed., 7:4777-4786.

[2]Ai, M., Du, Z., Zhu, S., et al., 2017. Composite resin reinforced with silver nanoparticles-laden hydroxyapatite nanowires for dentalapplication. Dent. Mater., 33(1):12-22.

[3]Amooaghaie, R., Saeri, M.R., Azizi, M., 2015. Synthesis, characterization and biocompatibility of silver nanoparticles synthesized from Nigella sativa leaf extract in comparison with chemical silver nanoparticle. Ecotoxicol. Environ. Saf., 120:400-408.

[4]Anisha, B.S., Biswas, R., Chennazhi, K.P., et al., 2013. Chitosan-hyaluronic acid/nano silver composite sponges for drug resistant bacteria infected diabetic wounds. Int. J. Biol. Macromol., 62:310-320.

[5]Arora, S., Jain, J., Rajwade, J.M., et al., 2008. Cellular responses induced by silver nanoparticles: in vitro studies. Toxicol. Lett., 179(2):93-100.

[6]Asharani, P.V., Hande, M.P., Valiyaveettil, S., 2009a. Anti-proliferative activity of silver nanoparticles. BMC Cell Biol., 10:65.

[7]Asharani, P.V., Low-Kah, M.G., Hande, M.P., et al., 2009b. Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano, 3(2):279-290.

[8]Asharani, P.V., Sethu, S., Lim, H.K., et al., 2012. Differential regulation of intracellular factors mediating cell cycle, DNA repair and inflammation following exposure to silver nanoparticles in human cells. Genome Integr., 3(1):2.

[9]Baker, C., Pradhan, A., Pakstis, L., et al., 2005. Synthesis and antibacterial properties of silver nanoparticles. J. Nanosci. Nanotechnol., 5(2):244-249.

[10]Beer, C., Foldbjerg, R., Hayashi, Y., et al., 2012. Toxicity of silver nanoparticles-nanoparticle or silver ion. Toxicol. Lett., 208(3):286-292.

[11]Budtz-Jorgensen, E., 1981. Oral mucosal lesions associated with the wearing of removable dentures. J. Oral Pathol., 10(2):65-80.

[12]Chen, S.F., Zhang, H., 2012. Aggregation kinetics of nano silver in different water conditions. Adv. Nat. Sci. Nanosci. Nanotechnol., 3(3):035006.

[13]Chladek, G., Kasperski, J., Barszczewska-Rybarek, I., et al., 2013. Sorption, solubility, bond strength and hardness of denture soft lining incorporated with silver nanoparticles. Int. J. Mol. Sci., 14(1):563-574.

[14]Chowdhury, N.R., MacGregor-Ramiasa, M., Zilm, P., et al., 2016. ‘Chocolate’ silver nanoparticles: synthesis, antibacterial activity and cytotoxicity. J. Coll. Interf. Sci., 482:151-158.

[15]de Lima, R., Seabra, A.B., Duran, N., 2012. Silver nanoparticles: a brief review of cytotoxicity and genotoxicity of chemically and biogenically synthesized nanoparticles. J. Appl. Toxicol., 32(11):867-879.

[16]Derks, J., Tomasi, C., 2015. Peri-implant health and disease: a systematic review of current epidemiology. J. Clin. Periodontol., 42(S16):S158-S171.

[17]Gromov, D.G., Lydia, M.P., Andrey, I.S., et al., 2015. Nucleation and growth of Ag nanoparticles on amorphous carbon surface from vapor phase formed by vacuum evaporation. Appl. Phys. A, 118(4):1297-1303.

[18]Fahmy, A., Eisa, W.H., Yosef, M., et al., 2016. Ultra-thin films of poly(acrylic acid)/silver nanocomposite coatings for antimicrobial applications. J. Spectrosc., 2016:7489536.

[19]Fan, C., Chu, L., Rawls, H.R., et al., 2011. Development of an antimicrobial resin—a pilot study. Dent. Mater., 27(4):322-328.

[20]Gliga, A.R., Skoglund, S., Wallinder, I.O., et al., 2014. Size-dependent cytotoxicity of silver nanoparticles in human lung cells: the role of cellular uptake, agglomeration and Ag release. Part Fibre Toxicol., 11(1):11.

[21]Gogoi, N., Babu, P.J., Mahanta, C., et al., 2015. Green synthesis and characterization of silver nanoparticles using alcoholic flower extract of Nyctanthes arbortristis and in vitro investigation of their antibacterial and cytotoxic activities. Mater. Sci. Eng. C, 46:463469.

[22]Grzegorz, C., Anna, M., Izabela, B.R., et al., 2011. Antifungal activity of denture soft lining material modified by silver nanoparticles—a pilot study. Int. J. Mol. Sci., 12(7):4735-4744.

[23]Hensten-Pettersen, A., Helgeland, K., 1981. Sensitivity of different human cell line in the biologic evaluation of dental resin-based restorative materials. Scand. J. Dent. Res., 89(1):102-107.

[24]Hsin, Y.H., Chen, C.F., Huang, S., et al., 2008. The apoptotic effect of nanosilver is mediated by a ROS- and JNK-dependent mechanism involving the mitochondrial pathway in NIH3T3 cells. Toxicol. Lett., 179(3):130-139.

[25]Huh, A.J., Kwon, Y.J., 2011. “Nanoantibiotics”: a new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. J. Control. Release, 156(2):128-145.

[26]Hussain, S.M., Hess, K.L., Gearhart, J.M., et al., 2005. In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol. in Vitro, 19(7):975-983.

[27]Jung, R., Kim, Y., Kim, H.S., et al., 2009. Antimicrobial properties of hydrated cellulose membranes with silver nanoparticles. J. Biomater. Sci. Polym. Ed., 20(3):311-324.

[28]Kasraei, S., Sami, L., Hendi, S., et al., 2014. Antibacterial properties of composite resins incorporating silver and zinc oxide nanoparticles on Streptococcus mutans and Lactobacillus. Restor. Dent. Endod., 39(2):109-114.

[29]Li, W.R., Xie, X.B., Shi, Q.S., et al., 2010. Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli. Appl. Microbiol. Biotechnol., 85(4):1115-1122.

[30]Luther, E.M., Koehler, Y., Diendorf, J., et al., 2011. Accumulation of silver nanoparticles by cultured primary brain astrocytes. Nanotechnology, 22(37):375101.

[31]Massa, M.A., Covarrubias, C., Bittner, M., et al., 2014. Synthesis of new antibacterial composite coating for titanium based on highly ordered nanoporous silica and silver nanoparticles. Mater. Sci. Eng. C, 45:146-153.

[32]Matsubara, V.H., Igai, F., Tamaki, R., et al., 2015. Use of silver nanoparticles reduces internal contamination of external hexagon implants by Candida albicans. Braz. Dent. J., 26(5):458-462.

[33]Mishra, S.K., Ferreira, J.M., Kannan, S., 2015. Mechanically stable antimicrobial chitosan-PVA-silver nanocomposite coatings deposited on titanium implants. Carbohydr. Polym., 121:37-48.

[34]Mombelli, A., Müller, N., Cionca, N., 2012. The epidemiology of peri-implantitis. Clin. Oral Implants Res., 23(S6):67-76.

[35]Morra, M., 2007. Biomolecular modification of implant surfaces. Expert Rev. Med. Devic., 4(3):361-372.

[36]Pan, Y., Jiang, L., Lin, H., et al., 2017. Cell death affected by dental alloys: modes and mechanisms. Dent. Mater. J., 36(1):82-87.

[37]Park, E.J., Yi, J., Kim, Y., et al., 2010. Silver nanoparticles induce cytotoxicity by a Trojan-horse type mechanism. Toxicol. in Vitro, 24(3):872-878.

[38]Park, H.J., Kim, J.Y., Kim, J., et al., 2009. Silver-ion-mediated reactive oxygen species generation affecting bactericidal activity. Water Res., 43(4):1027-1032.

[39]Park, M.V., Neigh, A.M., Vermeulen, J.P., et al., 2011. The effect of particle size on the cytotoxicity, inflammation, developmental toxicity and genotoxicity of silver nanoparticles. Biomaterials, 32(36):9810-9817.

[40]Philbrook, N.A., Winn, L.M., Afrooz, A.R., et al., 2011. The effect of TiO2 and Ag nanoparticles on reproduction and development of Drosophila melanogaster and CD-1 mice. Toxical. Appl. Pharmacol., 257(3):429-435.

[41]Qin, H., Cao, H., Zhao, Y., et al., 2015. Antimicrobial and osteogenic properties of silver-ion-implanted stainless steel. ACS Appl. Mater. Interf., 7(20):10785-10794.

[42]Ramage, G., Tomsett, K., Wickes, B.L., et al., 2004. Denture stomatitis: a role for Candida biofilms. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontol., 98(1):53-59.

[43]Riaz Ahmed, K.B., Nagy, A.M., Brown, R.P., et al., 2017. Silver nanoparticles: significance of physicochemical properties and assay interference on the interpretation of in vitro cytotoxicity studies. Toxicol. in Vitro, 38:179-192.

[44]Sabaliauskas, V., Juciute, R., Bukelskiene, V., et al., 2011. In vitro evaluation of cytotoxicity of permanent prosthetic materials. Stomatologija, 13(3):75-80.

[45]Samari, F., Dorostkar, S., 2016. Synthesis of highly stable silver nanoparticles using imidazolium based ionic liquid. Iran Chem. Soc., 13(4):689-693.

[46]Sangsuwan, A., Kawasaki, H., Iwasaki, Y., 2016. Thiolated-2-methacryloyloxyethyl phosphorylcholine protected silver nanoparticles as novel photo-induced cell-killing agents. Coll. Surf. B Biointerf., 140:128-134.

[47]Shulman, J.D., Rivera-Hidalgo, F., Beach, M.M., 2005. Risk factors associated with denture stomatitis in the United States. J. Oral Pathol. Med., 34(6):340-346.

[48]Singh, R.P., Ramarao, P., 2012. Cellular uptake, intracellular trafficking and cytotoxicity of silver nanoparticles. Toxicol. Lett., 213(2):249-259.

[49]Sodagar, A., Kassaee, M.Z., Akhavan, A., et al., 2012. Effect of silver nano particles on flexural strength of acrylic resins. J. Prosthodont. Res., 56(2):120-124.

[50]Stanford, C.M., 2008. Surface modifications of dental implants. Aust. Dent. J., 53(S1):S26-S33.

[51]Stoehr, L.C., Gonzalez, E., Stampfl, A., et al., 2011. Shape matters: effects of silver nanospheres and wires on human alveolar epithelial cells. Part. Fibre Toxicol., 8:36.

[52]Suresh, A.K., Pelletier, D.A., Wang, W., et al., 2010. Silver nanocrystallites: biofabrication using Shewanella oneidensis, and an evaluation of their comparative toxicity on Gram-negative and Gram-positive bacteria. Environ. Sci. Technol., 44(13):5210-5215.

[53]Tian, B., Chen, W., Yu, D.G., et al., 2016. Fabrication of silver nanoparticle-doped hydroxyapatite coatings with oriented block arrays for enhancing bactericidal effect and osteoinductivity. J. Mech. Behav. Biomed. Mater., 61:345-359.

[54]Vogel, K., Westphal, N., Salz, D., et al., 2015. Dental implants coated with a durable and antibacterial film. Surf. Innov., 3(1):27-38.

[55]Volker, C., Oetken, M., Oehlmann, J., 2013. The biological effects and possible modes of action of nanosilver. In: Whitacre, D.M. (Ed.), Reviews of Environmental Contamination and Toxicology Volume 223. Springer New York, New York, p.81-106.

[56]Wang, X., Ji, Z., Chang, C., et al., 2014. Use of coated silver nanoparticles to understand the relationship of particle dissolution and bioavailability to cell and lung toxicological potential. Small, 10(2):385-398.

[57]Wani, I.A., Khatoon, S., Ganguly, A., et al., 2013. Structural characterization and antimicrobial properties of silver nanoparticles prepared by inverse micro emulsion method. Coll. Surf. B Biointerf., 101:243-250.

[58]Wen, J.C., Jiang, F., Yeh, C.K., et al., 2016. Controlling fungal biofilms with functional drug delivery denture biomaterials. Coll. Surf. B Biointerf., 140:19-27.

[59]Wright, J.B., Lam, K., Buret, A.G., et al., 2002. Early healing events in a porcine model of contaminated wounds: effects of nanocrystal line silver on matrix metalloproteinases, cell apoptosis and healing. Wound Repair Regen., 10(3):141-151.

[60]Yang, E.J., Kim, S., Kim, J.S., et al., 2012. Inflammasome formation and IL-1β release by human blood monocytes in response to silver nanoparticles. Biomaterials, 33(28):6858-6867.

[61]You, J., Zhang, Y., Hu, Z., 2011. Bacteria and bacteriophage inactivation by silver and zinc oxide nanoparticles. Coll. Surf. B Biointerf., 85(2):161-167.

[62]Zamperini, C.A., Machado, A.L., Vergani, C.E., et al., 2010. Adherence in vitro of Candida albicans to plasma treated acrylic resin. Effect of plasma parameters, surface roughness and salivary pellicle. Arch. Oral Biol., 55(10):763-770.

[63]Zanette, C., Pelin, M., Crosera, M., et al., 2011. Silver nanoparticles exert a long-lasting ant proliferative effect on human keratinocyte HaCaT cell line. Toxicol. in Vitro, 25(5):1053-1060.

[64]Zhang, L., Shen, Y., Xie, A., et al., 2006. One-step synthesis of monodisperse silver nanoparticles beneath vitamin E Langmuir monolayers. J. Phys. Chem. B, 110(13):6615-6620.

[65]Zhang, T., Wang, L., Chen, Q., et al., 2014. Cytotoxic potential of silver nanoparticles. Yonsei Med. J., 55(2):283-291.

[66]Zheng, Y., Li, J., Liu, X., et al., 2012. Antimicrobial and osteogenic effect of Ag-implanted titanium with a nanostructured surface. Int. J. Nanomed., 7:875-884.

[67]Zielinska, E., Tukaj, C., Radomski, M.W., et al., 2016. Molecular mechanism of silver nanoparticles-induced human osteoblast cell death: protective effect of inducible nitric oxide synthase inhibitor. PLoS ONE, 11(10):e0164137.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE