Full Text:   <1491>

CLC number: 

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2022-01-25

Cited: 0

Clicked: 1265

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Bio-Design and Manufacturing  2022 Vol.5 No.2 P.318-332

http://doi.org/10.1007/s42242-021-00172-1


Injectable bioactive polymethyl methacrylate–hydrogel hybrid bone cement loaded with BMP-2 to improve osteogenesis for percutaneous vertebroplasty and kyphoplasty


Author(s):  Xin Sun, Xin Zhang, Xin Jiao, Jie Ma, Xingzhen Liu, Han Yang, Kangping Shen, Yaokai Gan, Jinwu Wang, Haiyan Li & Wenjie Jin

Affiliation(s):  Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China; more

Corresponding email(s):   wangjw-team@shsmu.edu.cn, haiyan.li@sjtu.edu.cn, surgeonjin@126.com, sunxinspine@sina.com, zhangxinsjtu@sjtu.edu.cn, jiaoxin2020@126.com, doctorjack@163.com, spine2009@sina.com, yanghan0609@sjtu.edu.cn, shkp2016@163.com, ganyk2004@126.com

Key Words:  Polymethyl methacrylate bone cement, Hydrogel, Bone morphogenetic protein-2, Osteogenesis, Percutaneous vertebroplasty


Share this article to: More


Abstract: 
Polymethyl methacrylate (PMMA) bone cement is used in augmenting and stabilizing fractured vertebral bodies through percutaneous vertebroplasty (PVP) and percutaneous kyphoplasty (PKP). However, applications of PMMA bone cement are limited by the high elasticity modulus of PMMA, its low biodegradability, and its limited ability to regenerate bone. To improve PMMA bioactivity and biodegradability and to modify its elasticity modulus, we mixed PMMA bone cement with oxidized hyaluronic acid and carboxymethyl chitosan in situ cross-linking hydrogel loaded with bone morphogenetic protein-2 (BMP-2) to achieve novel hybrid cement. These fabricated PMMA–hydrogel hybrid cements exhibited lower setting temperatures, a lower elasticity modulus, and better biodegradability and biocompatibility than that of pure PMMA cement, while retaining acceptable setting times, mechanical strength, and injectability. In addition, we detected release of BMP-2 from the PMMA–hydrogel hybrid cements, significantly enhancing in vitro osteogenesis of bone marrow mesenchymal stem cells by up-regulating the gene expression of Runx2, Col1, and OPN. Use of PMMA–hydrogel hybrid cements loaded with BMP-2 on rabbit femoral condyle bone-defect models revealed their biodegradability and enhanced bone formation. Our study demonstrated the favorable mechanical properties, biocompatibility, and biodegradability of fabricated PMMA–hydrogel hybrid cements loaded with BMP-2, as well as their ability to improve osteogenesis, making them a promising material for use in PKP and PVP.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE